No Arabic abstract
Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph (NoRH) at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 AA. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures ($T_B$) varying from ~10,000~K to ~20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2-min period of the microwave $T_B$ variation during the pre-impulsive stage of interest. The period agrees well with that reported for AIA sunward-contracting loops and upward ejective plasmoids (suggested to be reconnection outflows). This suggests that both periodicities are controlled by the same reconnection process that takes place intermittently at a 2-min time scale. We infer that at least a part of the emission is excited by non-thermal energetic electrons via the gyro-synchrotron mechanism. The study demonstrates the potential of microwave imaging in exploring the flux rope magnetic geometry and relevant reconnection process during the onset of solar eruption.
The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a standard picture although it remains elusive how the flux rope forms and evolves toward eruption. While 1/3 of the ejecta passing through spacecrafts demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bi-directional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degree of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.
We report microwave spectral imaging observations of an erupting magnetic flux rope during the early impulsive phase of the X8.2-class limb flare on 2017 September 10, obtained by the Expanded Owens Valley Solar Array. A few days prior to the eruption, when viewed against the disk, the flux rope appeared as a reverse S-shaped dark filament along the magnetic polarity inversion line. During the eruption, the rope exhibited a hot channel structure in extreme ultraviolet and soft X-ray passbands sensitive to ~10 MK plasma. The central portion of the flux rope was nearly aligned with the line of sight, which quickly developed into a teardrop-shaped dark cavity during the early phase of the eruption. A long and thin plasma sheet formed below the cavity, interpreted as the reconnection current sheet viewed edge-on. A nonthermal microwave source was present at the location of the central current sheet, which extended upward encompassing the dark cavity. A pair of nonthermal microwave sources were observed for several minutes on both sides of the main flaring region. They shared a similar temporal behavior and spectral property to the central microwave source below the cavity, interpreted as the conjugate footpoints of the erupting flux rope. These observations are broadly consistent with the magnetic topology and the associated energy release scenario suggested in the three-dimensional standard model for eruptive solar flares. In particular, our detection of nonthermal emission at conjugate flux rope footpoints provides solid evidence of particle transport along an erupting magnetic flux rope.
In this paper, we present a multi-wavelength analysis of an eruptive white-light M3.2 flare which occurred in active region NOAA 10486 on November 1, 2003. Excellent set of high resolution observations made by RHESSI and TRACE provide clear evidence of significant pre-flare activities for ~9 minutes in the form of an initiation phase observed at EUV/UV wavelengths followed by the X-ray precursor phase. During the initiation phase, we observed localized brightenings in the highly sheared core region close to the filament and interactions among short EUV loops overlying the filament which led to the opening of magnetic field lines. The X-ray precursor phase is manifested in RHESSI measurements below ~30 keV and coincided with the beginning of flux emergence at the flaring location along with early signatures of the eruption. From the RHESSI observations, we conclude that both plasma heating and electron acceleration occurred during the precursor phase. The main flare is consistent with the standard flare model. However, after the impulsive phase, intense HXR looptop source was observed without significant footpoint emission. More intriguingly, for a brief period the looptop source exhibited strong HXR emission with energies up to 100 keV and significant non-thermal characteristics. The present study indicates a causal relation between the activities in the preflare and main flare. We also conclude that pre-flare activities, occurred in the form of subtle magnetic reorganization along with localized magnetic reconnection, played a crucial role in destabilizing the active region filament leading to solar eruptive flare and associated large-scale phenomena.
We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by GOES soft X-rays (SXR) and spatially-integrated EUV emission at 94 and 335 {AA}. We identify pulsations of $approx 60$ seconds in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.
Solar flares are one of the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence for magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.