Do you want to publish a course? Click here

Langevin Simulations of the Half-Filled Cubic Holstein Model

86   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the past several years, reliable Quantum Monte Carlo results for the charge density wave transition temperature $T_{cdw}$ of the half-filled two dimensional Holstein model in square and honeycomb lattices have become available for the first time. Exploiting the further development of numerical methodology, here we present results in three dimensions, which are made possible through the use of Langevin evolution of the quantum phonon degrees of freedom. In addition to determining $T_{cdw}$ from the scaling of the charge correlations, we also examine the nature of charge order at general wave vectors for different temperatures, couplings, and phonon frequencies, and the behavior of the spectral function and specific heat.



rate research

Read More

We show that, by an appropriate choice of auxiliary fields and exact integration of the phonon degrees of freedom, it is possible to define a sign-free path integral for the so called Hubbard-Holstein model at half-filling. We use a statistical method, based on an accelerated and efficient Langevin dynamics, for evaluating all relevant correlation functions of the model. Preliminary calculations at $U/t=4$ and $U/t=1$, for $omega_0/t=1$, indicate a quite extended region around $U simeq {g^2 over omega_0}$ without either antiferromagnetic or charge-density-wave orders, separating two quantum critical points at zero temperature. The elimination of the sign problem in a model without explicit particle-hole symmetry may open new perspectives for strongly correlated models, even away from the purely attractive or particle-hole symmetric cases.
We present electron and phonon spectral functions calculated from determinant quantum Monte Carlo simulations of the half-filled two-dimensional Hubbard-Holstein model on a square lattice. By tuning the relative electron-electron ($e$-$e$) and electron-phonon ($e$-$ph$) interaction strengths, we show the electron spectral function evolving between antiferromagnetic insulating, metallic, and charge density wave insulating phases. The phonon spectra concurrently gain a strong momentum dependence and soften in energy upon approaching the charge density wave phase. In particular, we study how the $e$-$e$ and $e$-$ph$ interactions renormalize the spectra, and analyze how the interplay of these interactions influence the spectral renormalizations. We find that the presence of both interactions suppresses the amount of renormalization at low energy, thus allowing the emergence of a metallic phase. These findings demonstrate the importance of considering the influence of multiple interactions in spectroscopically determining any one interaction strength in strongly correlated materials.
We use an unbiased, continuous-time quantum Monte Carlo method to address the possibility of a zero-temperature phase without charge-density-wave (CDW) order in the Holstein and, by extension, the Holstein-Hubbard model on the half-filled square lattice. In particular, we present results spanning the whole range of phonon frequencies, allowing us to use the well understood adiabatic and antiadiabatic limits as reference points. For all parameters considered, our data suggest that CDW correlations are stronger than pairing correlations even at very low temperatures. These findings are compatible with a CDW ground state that is also suggested by theoretical arguments.
The eigenstate thermalization hypothesis (ETH) is a successful theory that provides sufficient criteria for ergodicity in quantum many-body systems. Most studies were carried out for Hamiltonians relevant for ultracold quantum gases and single-component systems of spins, fermions, or bosons. The paradigmatic example for thermalization in solid-state physics are phonons serving as a bath for electrons. This situation is often viewed from an open-quantum system perspective. Here, we ask whether a minimal microscopic model for electron-phonon coupling is quantum chaotic and whether it obeys ETH, if viewed as a closed quantum system. Using exact diagonalization, we address this question in the framework of the Holstein polaron model. Even though the model describes only a single itinerant electron, whose coupling to dispersionless phonons is the only integrability-breaking term, we find that the spectral statistics and the structure of Hamiltonian eigenstates exhibit essential properties of the corresponding random-matrix ensemble. Moreover, we verify the ETH ansatz both for diagonal and offdiagonal matrix elements of typical phonon and electron observables, and show that the ratio of their variances equals the value predicted from random-matrix theory.
165 - Soumen Bag , Arti Garg , 2015
We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered potential $Delta$ and the on-site Hubbard U. In both the methods we find that for a finite $Delta$ and at zero temperature, anti-ferromagnetic (AFM) order sets in beyond a threshold $U=U_{AF}$ via a first order phase transition below which the system is a paramagnetic band insulator. Both the methods show a clear evidence for a transition to a half-metal phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both the methods have good qualitative and quantitative consistency in the intermediate to strong coupling regime. On increasing the temperature, the AFM order is lost via a first order phase transition at a transition temperature $T_{AF}(U, Delta)$ within both the methods, for weak to intermediate values of U/t. But in the strongly correlated regime, where the effective low energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. As a result, at any finite temperature T, DMFT+CTQMC shows a second phase transition (not seen within DMFT+IPT) on increasing U beyond $U_{AF}$. At $U_N > U_{AF}$, when the Neel temperature $T_N$ for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second order transition. In the 3-dimensonal parameter space of $(U/t,T/t,Delta/t)$, there is a line of tricritical points that separates the surfaces of first and second order phase transitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا