Do you want to publish a course? Click here

Opportunistic Decoding with Timely Correction for Simultaneous Translation

78   0   0.0 ( 0 )
 Added by Renjie Zheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Simultaneous translation has many important application scenarios and attracts much attention from both academia and industry recently. Most existing frameworks, however, have difficulties in balancing between the translation quality and latency, i.e., the decoding policy is usually either too aggressive or too conservative. We propose an opportunistic decoding technique with timely correction ability, which always (over-)generates a certain mount of extra words at each step to keep the audience on track with the latest information. At the same time, it also corrects, in a timely fashion, the mistakes in the former overgenerated words when observing more source context to ensure high translation quality. Experiments show our technique achieves substantial reduction in latency and up to +3.1 increase in BLEU, with revision rate under 8% in Chinese-to-English and English-to-Chinese translation.



rate research

Read More

This paper proposes a decoding strategy for end-to-end simultaneous speech translation. We leverage end-to-end models trained in offline mode and conduct an empirical study for two language pairs (English-to-German and English-to-Portuguese). We also investigate different output token granularities including characters and Byte Pair Encoding (BPE) units. The results show that the proposed decoding approach allows to control BLEU/Average Lagging trade-off along different latency regimes. Our best decoding settings achieve comparable results with a strong cascade model evaluated on the simultaneous translation track of IWSLT 2020 shared task.
There has been great progress in improving streaming machine translation, a simultaneous paradigm where the system appends to a growing hypothesis as more source content becomes available. We study a related problem in which revisions to the hypothesis beyond strictly appending words are permitted. This is suitable for applications such as live captioning an audio feed. In this setting, we compare custom streaming approaches to re-translation, a straightforward strategy where each new source token triggers a distinct translation from scratch. We find re-translation to be as good or better than state-of-the-art streaming systems, even when operating under constraints that allow very few revisions. We attribute much of this success to a previously proposed data-augmentation technique that adds prefix-pairs to the training data, which alongside wait-k inference forms a strong baseline for streaming translation. We also highlight re-translations ability to wrap arbitrarily powerful MT systems with an experiment showing large improvements from an upgrade to its base model.
Diverse machine translation aims at generating various target language translations for a given source language sentence. Leveraging the linear relationship in the sentence latent space introduced by the mixup training, we propose a novel method, MixDiversity, to generate different translations for the input sentence by linearly interpolating it with different sentence pairs sampled from the training corpus when decoding. To further improve the faithfulness and diversity of the translations, we propose two simple but effective approaches to select diverse sentence pairs in the training corpus and adjust the interpolation weight for each pair correspondingly. Moreover, by controlling the interpolation weight, our method can achieve the trade-off between faithfulness and diversity without any additional training, which is required in most of the previous methods. Experiments on WMT16 en-ro, WMT14 en-de, and WMT17 zh-en are conducted to show that our method substantially outperforms all previous diverse machine translation methods.
180 - Kaitao Song , Xu Tan , Jianfeng Lu 2020
Neural machine translation (NMT) generates the next target token given as input the previous ground truth target tokens during training while the previous generated target tokens during inference, which causes discrepancy between training and inference as well as error propagation, and affects the translation accuracy. In this paper, we introduce an error correction mechanism into NMT, which corrects the error information in the previous generated tokens to better predict the next token. Specifically, we introduce two-stream self-attention from XLNet into NMT decoder, where the query stream is used to predict the next token, and meanwhile the content stream is used to correct the error information from the previous predicted tokens. We leverage scheduled sampling to simulate the prediction errors during training. Experiments on three IWSLT translation datasets and two WMT translation datasets demonstrate that our method achieves improvements over Transformer baseline and scheduled sampling. Further experimental analyses also verify the effectiveness of our proposed error correction mechanism to improve the translation quality.
Simultaneous translation is vastly different from full-sentence translation, in the sense that it starts translation before the source sentence ends, with only a few words delay. However, due to the lack of large scale and publicly available simultaneous translation datasets, most simultaneous translation systems still train with ordinary full-sentence parallel corpora which are not suitable for the simultaneous scenario due to the existence of unnecessary long-distance reorderings. Instead of expensive, time-consuming annotation, we propose a novel method that rewrites the target side of existing full-sentence corpus into simultaneous-style translation. Experiments on Chinese-to-English translation demonstrate about +2.7 BLEU improvements with the addition of newly generated pseudo references.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا