Do you want to publish a course? Click here

Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity

111   0   0.0 ( 0 )
 Added by Pedro Rodriguez
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Open-ended human learning and information-seeking are increasingly mediated by digital assistants. However, such systems often ignore the users pre-existing knowledge. Assuming a correlation between engagement and user responses such as liking messages or asking followup questions, we design a Wizard-of-Oz dialog task that tests the hypothesis that engagement increases when users are presented with facts related to what they know. Through crowd-sourcing of this experiment, we collect and release 14K dialogs (181K utterances) where users and assistants converse about geographic topics like geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog acts, grounding to Wikipedia, and user reactions to messages. Responses using a users prior knowledge increase engagement. We incorporate this knowledge into a multi-task model that reproduces human assistant policies and improves over a BERT content model by 13 mean reciprocal rank points.



rate research

Read More

Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires data that reflect the difficulty of the task arising from complex reasoning about claims made in multiple parts of a paper. In contrast, existing information-seeking question answering datasets usually contain questions about generic factoid-type information. We therefore present QASPER, a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers, motivating further research in document-grounded, information-seeking QA, which our dataset is designed to facilitate.
Conversational search is a relatively young area of research that aims at automating an information-seeking dialogue. In this paper we help to position it with respect to other research areas within conversational Artificial Intelligence (AI) by analysing the structural properties of an information-seeking dialogue. To this end, we perform a large-scale dialogue analysis of more than 150K transcripts from 16 publicly available dialogue datasets. These datasets were collected to inform different dialogue-based tasks including conversational search. We extract different patterns of mixed initiative from these dialogue transcripts and use them to compare dialogues of different types. Moreover, we contrast the patterns found in information-seeking dialogues that are being used for research purposes with the patterns found in virtual reference interviews that were conducted by professional librarians. The insights we provide (1) establish close relations between conversational search and other conversational AI tasks; and (2) uncover limitations of existing conversational datasets to inform future data collection tasks.
Information seeking is an essential step for open-domain question answering to efficiently gather evidence from a large corpus. Recently, iterative approaches have been proven to be effective for complex questions, by recursively retrieving new evidence at each step. However, almost all existing iterative approaches use predefined strategies, either applying the same retrieval function multiple times or fixing the order of different retrieval functions, which cannot fulfill the diverse requirements of various questions. In this paper, we propose a novel adaptive information-seeking strategy for open-domain question answering, namely AISO. Specifically, the whole retrieval and answer process is modeled as a partially observed Markov decision process, where three types of retrieval operations (e.g., BM25, DPR, and hyperlink) and one answer operation are defined as actions. According to the learned policy, AISO could adaptively select a proper retrieval action to seek the missing evidence at each step, based on the collected evidence and the reformulated query, or directly output the answer when the evidence set is sufficient for the question. Experiments on SQuAD Open and HotpotQA fullwiki, which serve as single-hop and multi-hop open-domain QA benchmarks, show that AISO outperforms all baseline methods with predefined strategies in terms of both retrieval and answer evaluations.
Information-seeking dialogue systems, including knowledge identification and response generation, aim to respond to users with fluent, coherent, and informative responses based on users needs, which. To tackle this challenge, we utilize data augmentation methods and several training techniques with the pre-trained language models to learn a general pattern of the task and thus achieve promising performance. In DialDoc21 competition, our system achieved 74.95 F1 score and 60.74 Exact Match score in subtask 1, and 37.72 SacreBLEU score in subtask 2. Empirical analysis is provided to explain the effectiveness of our approaches.
Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA---a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology---the set of linguistic features each language expresses---such that we expect models performing well on this set to generalize across a large number of the worlds languages. We present a quantitative analysis of the data quality and example-level qualitative linguistic analyses of observed language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but dont know the answer yet, and the data is collected directly in each language without the use of translation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا