Do you want to publish a course? Click here

CAiRE in DialDoc21: Data Augmentation for Information-Seeking Dialogue System

137   0   0.0 ( 0 )
 Added by Yan Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Information-seeking dialogue systems, including knowledge identification and response generation, aim to respond to users with fluent, coherent, and informative responses based on users needs, which. To tackle this challenge, we utilize data augmentation methods and several training techniques with the pre-trained language models to learn a general pattern of the task and thus achieve promising performance. In DialDoc21 competition, our system achieved 74.95 F1 score and 60.74 Exact Match score in subtask 1, and 37.72 SacreBLEU score in subtask 2. Empirical analysis is provided to explain the effectiveness of our approaches.



rate research

Read More

In this paper, we study the problem of data augmentation for language understanding in task-oriented dialogue system. In contrast to previous work which augments an utterance without considering its relation with other utterances, we propose a sequence-to-sequence generation based data augmentation framework that leverages one utterances same semantic alternatives in the training data. A novel diversity rank is incorporated into the utterance representation to make the model produce diverse utterances and these diversely augmented utterances help to improve the language understanding module. Experimental results on the Airline Travel Information System dataset and a newly created semantic frame annotation on Stanford Multi-turn, Multidomain Dialogue Dataset show that our framework achieves significant improvements of 6.38 and 10.04 F-scores respectively when only a training set of hundreds utterances is represented. Case studies also confirm that our method generates diverse utterances.
While several state-of-the-art approaches to dialogue state tracking (DST) have shown promising performances on several benchmarks, there is still a significant performance gap between seen slot values (i.e., values that occur in both training set and test set) and unseen ones (values that occur in training set but not in test set). Recently, the copy-mechanism has been widely used in DST models to handle unseen slot values, which copies slot values from user utterance directly. In this paper, we aim to find out the factors that influence the generalization ability of a common copy-mechanism model for DST. Our key observations include: 1) the copy-mechanism tends to memorize values rather than infer them from contexts, which is the primary reason for unsatisfactory generalization performance; 2) greater diversity of slot values in the training set increase the performance on unseen values but slightly decrease the performance on seen values. Moreover, we propose a simple but effective algorithm of data augmentation to train copy-mechanism models, which augments the input dataset by copying user utterances and replacing the real slot values with randomly generated strings. Users could use two hyper-parameters to realize a trade-off between the performances on seen values and unseen ones, as well as a trade-off between overall performance and computational cost. Experimental results on three widely used datasets (WoZ 2.0, DSTC2, and Multi-WoZ 2.0) show the effectiveness of our approach.
Recent advances in open-domain dialogue systems rely on the success of neural models that are trained on large-scale data. However, collecting large-scale dialogue data is usually time-consuming and labor-intensive. To address this data dilemma, we propose a novel data augmentation method for training open-domain dialogue models by utilizing unpaired data. Specifically, a data-level distillation process is first proposed to construct augmented dialogues where both post and response are retrieved from the unpaired data. A ranking module is employed to filter out low-quality dialogues. Further, a model-level distillation process is employed to distill a teacher model trained on high-quality paired data to augmented dialogue pairs, thereby preventing dialogue models from being affected by the noise in the augmented data. Automatic and manual evaluation indicates that our method can produce high-quality dialogue pairs with diverse contents, and the proposed data-level and model-level dialogue distillation can improve the performance of competitive baselines.
Despite significant interest in developing general purpose fact checking models, it is challenging to construct a large-scale fact verification dataset with realistic claims that would occur in the real world. Existing claims are either authored by crowdworkers, thereby introducing subtle biases that are difficult to control for, or manually verified by professional fact checkers, causing them to be expensive and limited in scale. In this paper, we construct a challenging, realistic, and large-scale fact verification dataset called FaVIQ, using information-seeking questions posed by real users who do not know how to answer. The ambiguity in information-seeking questions enables automatically constructing true and false claims that reflect confusions arisen from users (e.g., the year of the movie being filmed vs. being released). Our claims are verified to be natural, contain little lexical bias, and require a complete understanding of the evidence for verification. Our experiments show that the state-of-the-art models are far from solving our new task. Moreover, training on our data helps in professional fact-checking, outperforming models trained on the most widely used dataset FEVER or in-domain data by up to 17% absolute. Altogether, our data will serve as a challenging benchmark for natural language understanding and support future progress in professional fact checking.
Dialogue generation models face the challenge of producing generic and repetitive responses. Unlike previous augmentation methods that mostly focus on token manipulation and ignore the essential variety within a single sample using hard labels, we propose to promote the generation diversity of the neural dialogue models via soft embedding augmentation along with soft labels in this paper. Particularly, we select some key input tokens and fuse their embeddings together with embeddings from their semantic-neighbor tokens. The new embeddings serve as the input of the model to replace the original one. Besides, soft labels are used in loss calculation, resulting in multi-target supervision for a given input. Our experimental results on two datasets illustrate that our proposed method is capable of generating more diverse responses than raw models while remains a similar n-gram accuracy that ensures the quality of generated responses.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا