Do you want to publish a course? Click here

Counting statistics and microreversibility in stochastic models of transistors

143   0   0.0 ( 0 )
 Added by P. Gaspard
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multivariate fluctuation relations are established in three stochastic models of transistors, which are electronic devices with three ports and thus two coupled currents. In the first model, the transistor has no internal state variable and particle exchanges between the ports is described as a Markov jump process with constant rates. In the second model, the rates linearly depend on an internal random variable, representing the occupancy of the transistor by charge carriers. The third model has rates nonlinearly depending on the internal occupancy. For the first and second models, finite-time multivariate fluctuation relations are also established giving insight into the convergence towards the asymptotic form of multivariate fluctuation relations in the long-time limit. For all the three models, the transport properties are shown to satisfy Onsagers reciprocal relations in the linear regime close to equilibrium as well as their generalizations holding in the nonlinear regimes farther away from equilibrium, as a consequence of microreversibility.



rate research

Read More

208 - David Andrieux 2011
This paper has been withdrawn by the author due to an error in the derivation.
72 - Takato Yoshimura 2018
We study charge transport and fluctuations of the (3+1)-dimensional massive free Dirac theory. In particular, we focus on the steady state that emerges following a local quench whereby two independently thermalized halves of the system are connected and let to evolve unitarily for a long time. Based on the two-time von Neumann measurement statistics and exact computations, the scaled cumulant generating function associated with the charge transport is derived. We find that it can be written as a generalization of Levitov-Lesovik formula to the case in three spatial dimensions. In the massless case, we note that only the first four scaled cumulants are nonzero. Our results provide also a direct confirmation for the validity of the extended fluctuation relation in higher dimensions. An application of our approach to Lifshitz fermions is also briefly discussed.
73 - M. Barbier , P. Gaspard 2020
The consequences of microreversibility for the linear and nonlinear transport properties of systems subjected to external magnetic fields are systematically investigated in Aharonov-Bohm rings connected to two, three, and four terminals. Within the independent electron approximation, the cumulant generating function, which fully specifies the statistics of the nonequilibrium currents, is expressed in terms of the scattering matrix of these circuits. The time-reversal symmetry relations up to the third responses of the currents and the fourth cumulants are analytically investigated and numerically tested as a function of the magnetic flux. The validity of such relations is thus firmly confirmed in this class of open quantum systems.
197 - J. Gabelli , B. Reulet 2009
We report the first measurement of high order cumulants of the current fluctuations in an avalanche diode run through by a stationary dc current. Such a system is archetypic of devices in which transport is governed by a collective mechanism, here charge multiplication by avalanche. We have measured the first 5 cumulants of the probability distribution of the current fluctuations. We show that the charge multiplication factor is distributed according to a power law that is different from that of the usual avalanche below breakdown, when avalanches are well separated.
We calculate the distribution of current fluctuations in two simple exclusion models. Although these models are classical, we recover even for small systems such as a simple or a double barrier, the same distibution of current as given by traditionnal formalisms for quantum mesoscopic conductors. Due to their simplicity, the full counting statistics in exclusion models can be reduced to the calculation of the largest eigenvalue of a matrix, the size of which is the number of internal configurations of the system. As examples, we derive the shot noise power and higher order statistics of current fluctuations (skewness, full counting statistics, ....) of various conductors, including multiple barriers, diffusive islands between tunnel barriers and diffusive media. A special attention is dedicated to the third cumulant, which experimental measurability has been demonstrated lately.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا