Do you want to publish a course? Click here

Full Counting Statistics of Avalanche Transport: an Experiment

188   0   0.0 ( 0 )
 Added by Bertrand Reulet
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first measurement of high order cumulants of the current fluctuations in an avalanche diode run through by a stationary dc current. Such a system is archetypic of devices in which transport is governed by a collective mechanism, here charge multiplication by avalanche. We have measured the first 5 cumulants of the probability distribution of the current fluctuations. We show that the charge multiplication factor is distributed according to a power law that is different from that of the usual avalanche below breakdown, when avalanches are well separated.



rate research

Read More

We develop and test a computational framework to study heat exchange in interacting, nonequilibrium open quantum systems. Our iterative full counting statistics path integral (iFCSPI) approach extends a previously well-established influence functional path integral method, by going beyond reduced system dynamics to provide the cumulant generating function of heat exchange. The method is straightforward; we implement it for the nonequilibrium spin boson model to calculate transient and long-time observables, focusing on the steady-state heat current flowing through the system under a temperature difference. Results are compared to perturbative treatments and demonstrate good agreement in the appropriate limits. The challenge of converging nonequilibrium quantities, currents and high order cumulants, is discussed in detail. The iFCSPI, a numerically exact technique, naturally captures strong system-bath coupling and non-Markovian effects of the environment. As such, it is a promising tool for probing fundamental questions in quantum transport and quantum thermodynamics.
196 - David Andrieux 2011
This paper has been withdrawn by the author due to an error in the derivation.
72 - Takato Yoshimura 2018
We study charge transport and fluctuations of the (3+1)-dimensional massive free Dirac theory. In particular, we focus on the steady state that emerges following a local quench whereby two independently thermalized halves of the system are connected and let to evolve unitarily for a long time. Based on the two-time von Neumann measurement statistics and exact computations, the scaled cumulant generating function associated with the charge transport is derived. We find that it can be written as a generalization of Levitov-Lesovik formula to the case in three spatial dimensions. In the massless case, we note that only the first four scaled cumulants are nonzero. Our results provide also a direct confirmation for the validity of the extended fluctuation relation in higher dimensions. An application of our approach to Lifshitz fermions is also briefly discussed.
We consider an integrable system of two one-dimensional fermionic chains connected by a link. The hopping constant at the link can be different from that in the bulk. Starting from an initial state in which the left chain is populated while the right is empty, we present time-dependent full counting statistics and the Loschmidt echo in terms of Fredholm determinants. Using this exact representation, we compute the above quantities as well as the current through the link, the shot noise and the entanglement entropy in the large time limit. We find that the physics is strongly affected by the value of the hopping constant at the link. If it is smaller than the hopping constant in the bulk, then a local steady state is established at the link, while in the opposite case all physical quantities studied experience persistent oscillations. In the latter case the frequency of the oscillations is determined by the energy of the bound state and, for the Loschmidt echo, by the bias of chemical potentials.
A complete characterization of quantum fluctuations in many-body systems is accessible through the full counting statistics. We present an exact computation of statistical properties of light in a basic model of light-matter interaction: a multimode photonic field coupled to a single two-level emitter. We mostly consider an initial coherent state in a given mode and demonstrate how the original Poissonian statistics gets modified because of quantum many-body scattering effects leading to non-Poissonian distributions. We argue that measuring this statistics in a simple quantum optical setup provides an insight into many-body correlation effects with photons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا