Do you want to publish a course? Click here

Milky Way Subsystems from Globular Clusters Kinematics Using Gaia DR2 and HST Data

133   0   0.0 ( 0 )
 Added by Anisa Bajkova
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ Gaia DR2 proper motions for 151 Milky Way globular clusters from Vasiliev (2019) in tandem with distances and line-of-sight velocities to derive their kinematical properties. To assign clusters to the Milky Way thick disk, bulge, and halo we follow the approach of Posti et al. (2018) who distinguished among different Galactic stellar components using starss orbits. In particular, we use the ratio $L_{z}/e$, the $Z$ projection of the angular momentum to the eccentricity, as population tracer, which we complement with chemical abundances extracted from the literature and Monte-Carlo simulations. We find that 20 globular clusters belong to the bar/bulge of the Milky Way, 35 exhibit disk properties, and 96 are members of the halo. Moreover, we find that halo globular clusters have close to zero rotational velocity with average value $<Theta>$ =1$pm$ 4 km s$^{-1}$. On the other hand, the sample of clusters that belong to the thick disk possesses a significant rotation with average rotational velocity 179 $pm$ 6 km s$^{-1}$. The twenty globular clusters orbiting within the bar/bulge region of the Milky Way galaxy have average rotational velocity of 49 $pm$ 11 km s$^{-1}$.



rate research

Read More

The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.8^{+6.7}_{-2.7} x 10^{11} Msun based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
We present new mass estimates and cumulative mass profiles (CMPs) with Bayesian credible regions for the Milky Way (MW) Galaxy, given the kinematic data of globular clusters as provided by (1) the $textit{Gaia}$ DR2 collaboration and the HSTPROMO team, and (2) the new catalog in Vasiliev (2019). We use globular clusters beyond 15kpc to estimate the CMP of the MW, assuming a total gravitational potential model $Phi(r) = Phi_{circ}r^{-gamma}$, which approximates an NFW-type potential at large distances when $gamma=0.5$. We compare the resulting CMPs given data sets (1) and (2), and find the results to be nearly identical. The median estimate for the total mass is $M_{200}= 0.70 times 10^{12} M_{odot}$ and the $50%$ Bayesian credible interval is $(0.62, 0.81)times10^{12}M_{odot}$. However, because the Vasiliev catalog contains more complete data at large $r$, the MW total mass is slightly more constrained by these data. In this work, we also supply instructions for how to create a CMP for the MW with Bayesian credible regions, given a model for $M(<r)$ and samples drawn from a posterior distribution. With the CMP, we can report median estimates and $50%$ Bayesian credible regions for the MW mass within any distance (e.g., $M(r=25text{kpc})= 0.26~(0.20, 0.36)times10^{12}M_{odot}$, $M(r=50text{kpc})= 0.37~(0.29, 0.51) times10^{12}M_{odot}$, $M(r=100text{kpc}) = 0.53~(0.41, 0.74) times10^{12}M_{odot}$, etc.), making it easy to compare our results directly to other studies.
We estimate the mass of the Milky Way (MW) within 21.1 kpc using the kinematics of halo globular clusters (GCs) determined by Gaia. The second Gaia data release (DR2) contained a catalogue of absolute proper motions (PMs) for a set of Galactic GCs and satellite galaxies measured using Gaia DR2 data. We select from the catalogue only halo GCs, identifying a total of 34 GCs spanning $2.0 < r < 21.1$ kpc, and use their 3D kinematics to estimate the anisotropy over this range to be $beta = 0.46^{+0.15}_{-0.19}$, in good agreement, though slightly lower than, a recent estimate for a sample of halo GCs using HST PM measurements further out in the halo. We then use the Gaia kinematics to estimate the mass of the MW inside the outermost GC to be $M(< 21.1 mathrm{kpc}) = 0.21^{+0.04}_{-0.03} 10^{12} mathrm{M_odot}$, which corresponds to a circular velocity of $v_mathrm{circ}(21.1 mathrm{kpc}) = 206^{+19}_{-16}$ km/s. The implied virial mass is $M_mathrm{virial} = 1.28^{+0.97}_{-0.48} 10^{12} mathrm{M_odot}$. The error bars encompass the uncertainties on the anisotropy and on the density profile of the MW dark halo, and the scatter inherent in the mass estimator we use. We get improved estimates when we combine the Gaia and HST samples to provide kinematics for 46 GCs out to 39.5 kpc: $beta = 0.52^{+0.11}_{-0.14}$, $M(< 39.5 mathrm{kpc}) = 0.42^{+0.07}_{-0.06} 10^{12} mathrm{M_odot}$, and $M_mathrm{virial} = 1.54^{+0.75}_{-0.44} 10^{12} mathrm{M_odot}$. We show that these results are robust to potential substructure in the halo GC distribution. While a wide range of MW virial masses have been advocated in the literature, from below $10^{12} mathrm{M_odot}$ to above $2 times 10^{12}mathrm{M_odot}$, these new data imply that an intermediate mass is most likely.
This study constitutes part of a larger effort aimed at better characterizing the Galactic globular clusters (GGCs) located towards the inner Milky Way bulge and disk. Here, we focus on internal kinematics of nine GGCs, obtained from space-based imaging over time baselines of $>$9 years. We exploit multiple avenues to assess the dynamical state of the target GGCs, constructing radial profiles of projected stellar density, proper motion dispersion, and anisotropy. We posit that two-thirds (6/9) of our target GGCs are in an advanced dynamical state, and are close to (or have recently undergone) core collapse, supported by at least two lines of evidence: First, we find relatively steep proper motion dispersion profiles, in accord with literature values for core-collapsed GGCs. Second, we find that our sample is, in the mean, isotropic even out to their half-light radii, although one of our target clusters (NGC 6380) is tangentially anisotropic at $>$1$sigma$ beyond its half-light radius, in accord with theoretical predictions for clusters evolving in strong tidal fields. Our proper motion dispersion and anisotropy profiles are made publicly available.
To illustrate the potential of GDR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes, and precise Galactic cylindrical velocities . From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from $sim$5~kpc to $sim$13~kpc from the Galactic centre and up to 2~kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars ($r < 200$~pc), with median velocity uncertainties of 0.4~km/s, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. GDR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the $U-V$ plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. (abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا