Do you want to publish a course? Click here

Gaia Data Release 2: Mapping the Milky Way disc kinematics

105   0   0.0 ( 0 )
 Added by David Katz
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

To illustrate the potential of GDR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes, and precise Galactic cylindrical velocities . From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from $sim$5~kpc to $sim$13~kpc from the Galactic centre and up to 2~kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars ($r < 200$~pc), with median velocity uncertainties of 0.4~km/s, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. GDR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the $U-V$ plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. (abridged)



rate research

Read More

The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.8^{+6.7}_{-2.7} x 10^{11} Msun based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
We investigate the stellar kinematics of the Galactic disc in 7 $<$ $R$ $<$ 13,kpc using a sample of 118,945 red giant branch (RGB) stars from LAMOST and Gaia. We characterize the median, dispersion and skewness of the distributions of the 3D stellar velocities, actions and orbital parameters across the age-metallicity and the disc $R$ -- $Z$ plane. Our results reveal abundant but clear stellar kinematic patterns and structures in the age -- metallicity and the disc $R$ -- $Z$ plane. The most prominent feature is the strong variations of the velocity, action, and orbital parameter distributions from the young, metal-rich thin disc to the old, metal-poor thick disc, a number of smaller-scale structures -- such as velocity streams, north-south asymmetries, and kinematic features of spiral arms -- are clearly revealed. Particularly, the skewness of $V_{phi}$ and $J_{phi}$ reveals a new substructure at $Rsimeq12$,kpc and $Zsimeq0$,kpc, possibly related to dynamical effects of spiral arms in the outer disc. We further study the stellar migration through analysing the stellar orbital parameters and stellar birth radii. The results suggest that the thick disc stars near the solar radii and beyond are mostly migrated from the inner disc of $Rsim4 - 6$,kpc due to their highly eccentrical orbits. Stellar migration due to dynamical processes with angular momentum transfer (churning) are prominent for both the old, metal-rich stars (outward migrators) and the young metal-poor stars (inward migrators). The spatial distribution in the $R$ -- $Z$ plane for the inward migrators born at a Galactocentric radius of $>$12,kpc show clear age stratifications, possibly an evidence that these inward migrators are consequences of splashes triggered by merger events of satellite galaxies that have been lasted in the past few giga years.
In this paper we introduce a new method for analysing Milky Way phase-space which allows us to reveal the imprint left by the Milky Way bar and spiral arms on the stars with full phase-space data in Gaia Data Release 2. The unprecedented quality and extended spatial coverage of these data enable us to discover six prominent stellar density structures in the disc to a distance of 5 kpc from the Sun. Four of these structures correspond to the spiral arms detected previously in the gas and young stars (Scutum-Centaurus, Sagittarius, Local and Perseus). The remaining two are associated with the main resonances of the Milky Way bar where corotation is placed at around 6.2 kpc and the outer Lindblad resonance beyond the Solar radius, at around 9 kpc. For the first time we provide evidence of the imprint left by spiral arms and resonances in the stellar densities not relying on a specific tracer, through enhancing the signatures left by these asymmetries. Our method offers new avenues for studying how the stellar populations in our Galaxy are shaped.
We employ Gaia DR2 proper motions for 151 Milky Way globular clusters from Vasiliev (2019) in tandem with distances and line-of-sight velocities to derive their kinematical properties. To assign clusters to the Milky Way thick disk, bulge, and halo we follow the approach of Posti et al. (2018) who distinguished among different Galactic stellar components using starss orbits. In particular, we use the ratio $L_{z}/e$, the $Z$ projection of the angular momentum to the eccentricity, as population tracer, which we complement with chemical abundances extracted from the literature and Monte-Carlo simulations. We find that 20 globular clusters belong to the bar/bulge of the Milky Way, 35 exhibit disk properties, and 96 are members of the halo. Moreover, we find that halo globular clusters have close to zero rotational velocity with average value $<Theta>$ =1$pm$ 4 km s$^{-1}$. On the other hand, the sample of clusters that belong to the thick disk possesses a significant rotation with average rotational velocity 179 $pm$ 6 km s$^{-1}$. The twenty globular clusters orbiting within the bar/bulge region of the Milky Way galaxy have average rotational velocity of 49 $pm$ 11 km s$^{-1}$.
The Gaia Data Release 2 contains the 1st release of radial velocities complementing the kinematic data of a sample of about 7 million relatively bright, late-type stars. Aims: This paper provides a detailed description of the Gaia spectroscopic data processing pipeline, and of the approach adopted to derive the radial velocities presented in DR2. Methods: The pipeline must perform four main tasks: (i) clean and reduce the spectra observed with the Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument, including wavelength, straylight, line-spread function, bias non-uniformity, and photometric zeropoint; (iii) extract the radial velocities; and (iv) verify the accuracy and precision of the results. The radial velocity of a star is obtained through a fit of the RVS spectrum relative to an appropriate synthetic template spectrum. An additional task of the spectroscopic pipeline was to provide 1st-order estimates of the stellar atmospheric parameters required to select such template spectra. We describe the pipeline features and present the detailed calibration algorithms and software solutions we used to produce the radial velocities published in DR2. Results: The spectroscopic processing pipeline produced median radial velocities for Gaia stars with narrow-band near-IR magnitude Grvs < 12 (i.e. brighter than V~13). Stars identified as double-lined spectroscopic binaries were removed from the pipeline, while variable stars, single-lined, and non-detected double-lined spectroscopic binaries were treated as single stars. The scatter in radial velocity among different observations of a same star, also published in DR2, provides information about radial velocity variability. For the hottest (Teff > 7000 K) and coolest (Teff < 3500 K) stars, the accuracy and precision of the stellar parameter estimates are not sufficient to allow selection of appropriate templates. [Abridged]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا