Do you want to publish a course? Click here

The physical origins of extreme cross-polarization extinction in confocal microscopy

99   0   0.0 ( 0 )
 Added by Bernhard Urbaszek
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Confocal microscopy is an essential imaging tool for biological systems, in solid-state physics and nano-photonics. Using confocal microscopes allows performing resonant fluorescence experiments, where the emitted light has the same wavelength as the excitation laser. Theses challenging experiments are carried out under linear cross-polarization conditions, rejecting laser light from the detector. In this work we uncover the physical mechanisms that are at the origin of the yet unexplained high polarization rejection ratio which makes these measurements possible. We show in both experiment and theory that the use of a reflecting surface (i.e. the beam-splitter and mirrors) placed between the polarizer and analyzer in combination with a confocal arrangement explains the giant cross-polarization extinction ratio of 10^8 and beyond. We map the modal transformation of the polarized optical Gaussian beam. We find an intensity hole in the reflected beam under cross-polarization conditions. We interpret this as a manifestation of the Imbert-Fedorov effect, which deviates the beam depending on its polarization helicity. This implies that this topological effect is amplified here from the usually observed nanometer to the micrometer scale due to our cross-polarization dark field methods. We confirm these experimental findings for a large variety of commercially available mirrors and polarization components, allowing their practical implementation in many experiments.



rate research

Read More

We introduce a new modality for dynamic phase imaging in confocal microscopy based on synthetic optical holography. By temporal demultiplexing of the detector signal into a series of holograms, we record time-resolved phase images directly in the time domain at a bandwidth as determined by the photo detector and digitizer. We demonstrate our method by optical imaging of transient vibrations in an atomic force microscope cantilever with 100 ns time resolution, and observe the dynamic deformation of the cantilever surface after excitation with broadband mechanical pulses. Temporal Fourier transform of a single data set acquired in 4.2 minutes yields frequency and mode profile of all excited out-of-plane vibration modes with sub-picometer vertical sensitivity and sub-micrometer lateral resolution. Our method has the potential for transient and spectroscopic vibration imaging of micromechanical systems at nano- and picosecond scale time resolution.
We present a new flexible high speed laser scanning confocal microscope and its extension by an astigmatism particle tracking device (APTV). Many standard confocal microscopes use either a single laser beam to scan the sample at relatively low overall frame rate, or many laser beam to simultaneously scan the sample and achieve a high overall frame rate. Single-laser-beam confocal microscope often use a point detector to acquire the image. To achieve high overall frame rates, we use, next to the standard 2D probe scanning unit, a second 2D scan unit projecting the image directly on a 2D CCD-sensor (re-scan configuration). Using only a single laser beam eliminates cross-talk and leads to an imaging quality that is independent of the frame rate with a lateral resolution of 0.235unit{mu m}. The design described here is suitable for high frame rate, i.e., for frame rates well above video rate (full frame) up to a line rate of 32kHz. The dwell time of the laser focus on any spot in the sample (122ns) is significantly shorter than in standard confocal microscopes (in the order of milli or microseconds). This short dwell time reduces phototoxicity and bleaching of fluorescent molecules. The new design opens further flexibility and facilitates coupling to other optical methods. The setup can easily be extended by an APTV device to measure three dimensional dynamics while being able to show high resolution confocal structures. Thus one can use the high resolution confocal information synchronized with an APTV dataset.
Spatial resolution is one of the most important specifications of an imaging system. Recent results in quantum parameter estimation theory reveal that an arbitrarily small distance between two incoherent point sources can always be efficiently determined through the use of a spatial mode sorter. However, extending this procedure to a general object consisting of many incoherent point sources remains challenging, due to the intrinsic complexity of multi-parameter estimation problems. Here, we generalize the Richardson-Lucy (RL) deconvolution algorithm to address this challenge. We simulate its application to an incoherent confocal microscope, with a Zernike spatial mode sorter replacing the pinhole used in a conventional confocal microscope. We test different spatially incoherent objects of arbitrary geometry, and we find that the resolution enhancement of sorter-based microscopy is on average over 30% higher than that of a conventional confocal microscope using the standard RL deconvolution algorithm. Our method could potentially be used in diverse applications such as fluorescence microscopy and astronomical imaging.
We present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vibration with a piezo-controlled stage, we record synthetic holograms on commercial confocal microscopes (Nikon, model: A1R; Zeiss: model: LSM-880), from which quantitative phase images are reconstructed. We demonstrate our technique by stain-free imaging of cervical (HeLa) and ovarian (ES-2) cancer cells and stem cell (mHAT9a) samples. Our technique has the potential to extend fluorescence imaging applications in confocal microscopy by providing label-free cell finding, monitoring cell morphology, as well as non-perturbing long-time observation of live cells based on quantitative phase contrast.
Polarized light microscopy provides high contrast to birefringent specimen and is widely used as a diagnostic tool in pathology. However, polarization microscopy systems typically operate by analyzing images collected from two or more light paths in different states of polarization, which lead to relatively complex optical designs, high system costs or experienced technicians being required. Here, we present a deep learning-based holographic polarization microscope that is capable of obtaining quantitative birefringence retardance and orientation information of specimen from a phase recovered hologram, while only requiring the addition of one polarizer/analyzer pair to an existing holographic imaging system. Using a deep neural network, the reconstructed holographic images from a single state of polarization can be transformed into images equivalent to those captured using a single-shot computational polarized light microscope (SCPLM). Our analysis shows that a trained deep neural network can extract the birefringence information using both the sample specific morphological features as well as the holographic amplitude and phase distribution. To demonstrate the efficacy of this method, we tested it by imaging various birefringent samples including e.g., monosodium urate (MSU) and triamcinolone acetonide (TCA) crystals. Our method achieves similar results to SCPLM both qualitatively and quantitatively, and due to its simpler optical design and significantly larger field-of-view, this method has the potential to expand the access to polarization microscopy and its use for medical diagnosis in resource limited settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا