Do you want to publish a course? Click here

Superconducting-like heat current: Effective cancellation of current-dissipation trade off by quantum coherence

130   0   0.0 ( 0 )
 Added by Hiroyasu Tajima
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Producing a large current typically requires large dissipation, as is the case in electric conduction, where Joule heating is proportional to the square of the current. Stochastic thermodynamics offers a framework to study nonequilibrium thermodynamics of small fluctuating systems, and quite recently, microscopic derivations and universal understanding of the trade-off relation between the current and dissipation have been put forward. Here we establish a universal framework clarifying how quantum coherence affects the trade-off between the current and dissipation: a proper use of coherence enhances the heat current without increasing dissipation, i.e. coherence can reduce friction. If the amount of coherence is large enough, this friction becomes virtually zero, realizing a superconducting-like ``dissipation-less heat current. Since our framework clarifies a general relation among coherence, energy flow, and dissipation, it can be applied to many branches of science. As an application to energy science, we construct a quantum heat engine cycle that exceeds the power-efficiency bound on classical engines, and effectively attains the Carnot efficiency with finite power in fast cycles. We discuss important implications of our findings with regard to the field of quantum information theory, condensed matter physics and biology.



rate research

Read More

Normally, quantum fluctuations enhance the escape from metastable states in the presence of dissipation. Here we show that dissipation can enhance the stability of a quantum metastable system, consisting of a particle moving in a strongly asymmetric double well potential, interacting with a thermal bath. We find that the escape time from the metastable state has a nonmonotonic behavior versus the system-bath coupling and the temperature, producing a stabilizing effect.
We propose a quantum enhanced heat engine with entanglement. The key feature of our scheme is to utilize a superabsorption that exhibits an enhanced energy absorption by entangled qubits. While a conventional engine with separable qubits provides a scaling of a power $P = Theta (N)$ for given $N$ qubits, our engine using the superabsorption provides a power with a quantum scaling of $P = Theta(N^2)$ at a finite temperature. Our results pave the way for a new generation of quantum heat engines.
We study the trade-off relations given by the l_1-norm coherence of general multipartite states. Explicit trade-off inequalities are derived with lower bounds given by the coherence of either bipartite or multipartite reduced density matrices. In particular, for pure three-qubit states, it is explicitly shown that the trade-off inequality is lower bounded by the three tangle of quantum entanglement.
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high fidelity two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. While continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in the last years has been impressive, and here we hope to convey the excitement stemming from this progress.
Quantum coherence is the most fundamental of all quantum quantifiers, underlying other well-known quantities such as entanglement, quantum discord, and Bell correlations. It can be distributed in a multipartite system in various ways -- for example, in a bipartite system it can exist within subsystems (local coherence) or collectively between the subsystems (global coherence) and exhibits a trade-off relation. In quantum systems with more than two subsystems, there are more trade-off relations, due to the various decomposition ways of the coherence. In this paper, we experimentally verify these coherence trade-off relations in adiabatically evolved quantum systems using a spin system by changing the state from a product state to a tripartite entangled state. We study the full set of coherence trade-off relations between the original state, the bipartite product state, the tripartite product state, and the decohered product state. We also experimentally verify the monogamy inequality and show that both the quantum systems are polygamous except for the initial product state. We find that despite the different types of states involved, the properties of the state in terms of coherence and monogamy are equivalent. This illustrates the utility of using coherence as a characterization tool for quantum states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا