Do you want to publish a course? Click here

Towards Multimodal Response Generation with Exemplar Augmentation and Curriculum Optimization

392   0   0.0 ( 0 )
 Added by Zekang Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently, variational auto-encoder (VAE) based approaches have made impressive progress on improving the diversity of generated responses. However, these methods usually suffer the cost of decreased relevance accompanied by diversity improvements. In this paper, we propose a novel multimodal response generation framework with exemplar augmentation and curriculum optimization to enhance relevance and diversity of generated responses. First, unlike existing VAE-based models that usually approximate a simple Gaussian posterior distribution, we present a Gaussian mixture posterior distribution (i.e, multimodal) to further boost response diversity, which helps capture complex semantics of responses. Then, to ensure that relevance does not decrease while diversity increases, we fully exploit similar examples (exemplars) retrieved from the training data into posterior distribution modeling to augment response relevance. Furthermore, to facilitate the convergence of Gaussian mixture prior and posterior distributions, we devise a curriculum optimization strategy to progressively train the model under multiple training criteria from easy to hard. Experimental results on widely used SwitchBoard and DailyDialog datasets demonstrate that our model achieves significant improvements compared to strong baselines in terms of diversity and relevance.

rate research

Read More

293 - Lei Shen , Yang Feng 2020
Emotion-controllable response generation is an attractive and valuable task that aims to make open-domain conversations more empathetic and engaging. Existing methods mainly enhance the emotion expression by adding regularization terms to standard cross-entropy loss and thus influence the training process. However, due to the lack of further consideration of content consistency, the common problem of response generation tasks, safe response, is intensified. Besides, query emotions that can help model the relationship between query and response are simply ignored in previous models, which would further hurt the coherence. To alleviate these problems, we propose a novel framework named Curriculum Dual Learning (CDL) which extends the emotion-controllable response generation to a dual task to generate emotional responses and emotional queries alternatively. CDL utilizes two rewards focusing on emotion and content to improve the duality. Additionally, it applies curriculum learning to gradually generate high-quality responses based on the difficulties of expressing various emotions. Experimental results show that CDL significantly outperforms the baselines in terms of coherence, diversity, and relation to emotion factors.
158 - Yixuan Su , Deng Cai , Qingyu Zhou 2020
We study the learning of a matching model for dialogue response selection. Motivated by the recent finding that models trained with random negative samples are not ideal in real-world scenarios, we propose a hierarchical curriculum learning framework that trains the matching model in an easy-to-difficult scheme. Our learning framework consists of two complementary curricula: (1) corpus-level curriculum (CC); and (2) instance-level curriculum (IC). In CC, the model gradually increases its ability in finding the matching clues between the dialogue context and a response candidate. As for IC, it progressively strengthens the models ability in identifying the mismatching information between the dialogue context and a response candidate. Empirical studies on three benchmark datasets with three state-of-the-art matching models demonstrate that the proposed learning framework significantly improves the model performance across various evaluation metrics.
Dialogue generation models face the challenge of producing generic and repetitive responses. Unlike previous augmentation methods that mostly focus on token manipulation and ignore the essential variety within a single sample using hard labels, we propose to promote the generation diversity of the neural dialogue models via soft embedding augmentation along with soft labels in this paper. Particularly, we select some key input tokens and fuse their embeddings together with embeddings from their semantic-neighbor tokens. The new embeddings serve as the input of the model to replace the original one. Besides, soft labels are used in loss calculation, resulting in multi-target supervision for a given input. Our experimental results on two datasets illustrate that our proposed method is capable of generating more diverse responses than raw models while remains a similar n-gram accuracy that ensures the quality of generated responses.
Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation -- a technique particularly suitable for training with limited data -- for this few-shot, highly-multiclass text classification setting. On four diverse text classification tasks, we find that common data augmentation techniques can improve the performance of triplet networks by up to 3.0% on average. To further boost performance, we present a simple training strategy called curriculum data augmentation, which leverages curriculum learning by first training on only original examples and then introducing augmented data as training progresses. We explore a two-stage and a gradual schedule, and find that, compared with standard single-stage training, curriculum data augmentation trains faster, improves performance, and remains robust to high amounts of noising from augmentation.
The training of deep learning models poses vast challenges of including parameter tuning and ordering of training data. Significant research has been done in Curriculum learning for optimizing the sequence of training data. Recent works have focused on using complex reinforcement learning techniques to find the optimal data ordering strategy to maximize learning for a given network. In this paper, we present a simple and efficient technique based on continuous optimization. We call this new approach Training Sequence Optimization (TSO). There are three critical components in our proposed approach: (a) An encoder network maps/embeds training sequence into continuous space. (b) A predictor network uses the continuous representation of a strategy as input and predicts the accuracy for fixed network architecture. (c) A decoder further maps a continuous representation of a strategy to the ordered training dataset. The performance predictor and encoder enable us to perform gradient-based optimization in the continuous space to find the embedding of optimal training data ordering with potentially better accuracy. Experiments show that we can gain 2AP with our generated optimal curriculum strategy over the random strategy using the CIFAR-100 dataset and have better boosts than the state of the art CL algorithms. We do an ablation study varying the architecture, dataset and sample sizes showcasing our approachs robustness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا