Do you want to publish a course? Click here

Towards Efficiently Diversifying Dialogue Generation via Embedding Augmentation

92   0   0.0 ( 0 )
 Added by Yu Cao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Dialogue generation models face the challenge of producing generic and repetitive responses. Unlike previous augmentation methods that mostly focus on token manipulation and ignore the essential variety within a single sample using hard labels, we propose to promote the generation diversity of the neural dialogue models via soft embedding augmentation along with soft labels in this paper. Particularly, we select some key input tokens and fuse their embeddings together with embeddings from their semantic-neighbor tokens. The new embeddings serve as the input of the model to replace the original one. Besides, soft labels are used in loss calculation, resulting in multi-target supervision for a given input. Our experimental results on two datasets illustrate that our proposed method is capable of generating more diverse responses than raw models while remains a similar n-gram accuracy that ensures the quality of generated responses.



rate research

Read More

Existing methods for Dialogue Response Generation (DRG) in Task-oriented Dialogue Systems (TDSs) can be grouped into two categories: template-based and corpus-based. The former prepare a collection of response templates in advance and fill the slots with system actions to produce system responses at runtime. The latter generate system responses token by token by taking system actions into account. While template-based DRG provides high precision and highly predictable responses, they usually lack in terms of generating diverse and natural responses when compared to (neural) corpus-based approaches. Conversely, while corpus-based DRG methods are able to generate natural responses, we cannot guarantee their precision or predictability. Moreover, the diversity of responses produced by todays corpus-based DRG methods is still limited. We propose to combine the merits of template-based and corpus-based DRGs by introducing a prototype-based, paraphrasing neural network, called P2-Net, which aims to enhance quality of the responses in terms of both precision and diversity. Instead of generating a response from scratch, P2-Net generates system responses by paraphrasing template-based responses. To guarantee the precision of responses, P2-Net learns to separate a response into its semantics, context influence, and paraphrasing noise, and to keep the semantics unchanged during paraphrasing. To introduce diversity, P2-Net randomly samples previous conversational utterances as prototypes, from which the model can then extract speaking style information. We conduct extensive experiments on the MultiWOZ dataset with both automatic and human evaluations. The results show that P2-Net achieves a significant improvement in diversity while preserving the semantics of responses.
Neural dialogue generation models trained with the one-hot target distribution suffer from the over-confidence issue, which leads to poor generation diversity as widely reported in the literature. Although existing approaches such as label smoothing can alleviate this issue, they fail to adapt to diverse dialog contexts. In this paper, we propose an Adaptive Label Smoothing (AdaLabel) approach that can adaptively estimate a target label distribution at each time step for different contexts. The maximum probability in the predicted distribution is used to modify the soft target distribution produced by a novel light-weight bi-directional decoder module. The resulting target distribution is aware of both previous and future contexts and is adjusted to avoid over-training the dialogue model. Our model can be trained in an end-to-end manner. Extensive experiments on two benchmark datasets show that our approach outperforms various competitive baselines in producing diverse responses.
Current state-of-the-art neural dialogue models learn from human conversations following the data-driven paradigm. As such, a reliable training corpus is the crux of building a robust and well-behaved dialogue model. However, due to the open-ended nature of human conversations, the quality of user-generated training data varies greatly, and effective training samples are typically insufficient while noisy samples frequently appear. This impedes the learning of those data-driven neural dialogue models. Therefore, effective dialogue learning requires not only more reliable learning samples, but also fewer noisy samples. In this paper, we propose a data manipulation framework to proactively reshape the data distribution towards reliable samples by augmenting and highlighting effective learning samples as well as reducing the effect of inefficient samples simultaneously. In particular, the data manipulation model selectively augments the training samples and assigns an importance weight to each instance to reform the training data. Note that, the proposed data manipulation framework is fully data-driven and learnable. It not only manipulates training samples to optimize the dialogue generation model, but also learns to increase its manipulation skills through gradient descent with validation samples. Extensive experiments show that our framework can improve the dialogue generation performance with respect to various automatic evaluation metrics and human judgments.
We present a contrasting learning approach with data augmentation techniques to learn document representations in an unsupervised manner. Inspired by recent contrastive self-supervised learning algorithms used for image and NLP pretraining, we hypothesize that high-quality document embedding should be invariant to diverse paraphrases that preserve the semantics of the original document. With different backbones and contrastive learning frameworks, our study reveals the enormous benefits of contrastive augmentation for document representation learning with two additional insights: 1) including data augmentation in a contrastive way can substantially improve the embedding quality in unsupervised document representation learning, and 2) in general, stochastic augmentations generated by simple word-level manipulation work much better than sentence-level and document-level ones. We plug our method into a classifier and compare it with a broad range of baseline methods on six benchmark datasets. Our method can decrease the classification error rate by up to 6.4% over the SOTA approaches on the document classification task, matching or even surpassing fully-supervised methods.
98 - Yifan Gao , Piji Li , Wei Bi 2020
Sentence function is an important linguistic feature indicating the communicative purpose in uttering a sentence. Incorporating sentence functions into conversations has shown improvements in the quality of generated responses. However, the number of utterances for different types of fine-grained sentence functions is extremely imbalanced. Besides a small number of high-resource sentence functions, a large portion of sentence functions is infrequent. Consequently, dialogue generation conditioned on these infrequent sentence functions suffers from data deficiency. In this paper, we investigate a structured meta-learning (SML) approach for dialogue generation on infrequent sentence functions. We treat dialogue generation conditioned on different sentence functions as separate tasks, and apply model-agnostic meta-learning to high-resource sentence functions data. Furthermore, SML enhances meta-learning effectiveness by promoting knowledge customization among different sentence functions but simultaneously preserving knowledge generalization for similar sentence functions. Experimental results demonstrate that SML not only improves the informativeness and relevance of generated responses, but also can generate responses consistent with the target sentence functions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا