Do you want to publish a course? Click here

Single shot x-ray diffractometry in SACLA with pulsed magnetic fields up to 16 T

107   0   0.0 ( 0 )
 Added by Akihiko Ikeda
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single shot x-ray diffraction (XRD) experiments have been performed with a x-ray free electron laser (XFEL) under pulsed high magnetic fields up to 16 T generated with a nondestructive minicoil. The antiferromagnetic insulator phase in a perovskite manganaite, Pr$_{0.6}$Ca$_{0.4}$MnO$_{3}$, is collapsed at a magnetic field of $approx 8$ T with an emergence of the ferromagnetic metallic phase, which is observed via the accompanying lattice changes in a series of the single shot XRD. The feasibility of the single shot XRD experiment under ultrahigh magnetic fields beyond 100 T is discussed, which is generated with a portable destructive pulse magnet.



rate research

Read More

We have measured the magnetization and specific heat of multiferroic CoCr2O4 in magnetic fields up to 14 T. The high-field magnetization measurements indicate a new phase transition at T* = 5 - 6 K. The phase between T* and the lock-in transition at 15 K is characterized by magnetic irreversibility. At higher magnetic fields, the irreversibility increases. Specific-heat measurements confirm the transition at T*, and also show irreversible behavior. We construct a field-temperature phase diagram of CoCr2O4.
Magneto-caloric effects (MCEs) measurement system in adiabatic condition is proposed to investigate the thermodynamic properties in pulsed magnetic fields up to 55 T. With taking the advantage of the fast field- sweep rate in pulsed field, adiabatic measurements of MCEs were carried out at various temperatures. To obtain the prompt response of the thermometer in the pulsed field, a thin film thermometer is grown directly on the sample surfaces. The validity of the present setup was demonstrated in the wide temperature range through the measurements on Gd at about room temperature and on Gd3Ga5O12 at low temperatures. The both results show reasonable agreement with the data reported earlier. By comparing the MCE data with the specific heat data, we could estimate the entropy as functions of magnetic field and temperature. The results demonstrate the possibility that our approach can trace the change in transition temperature caused by the external field.
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ~ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state.
We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.
We here report magnetostriction measurements under pulsed megagauss fields using a high-speed 100 MHz strain monitoring system devised using fiber Bragg grating (FBG) technique with optical filter method. The optical filter method is a detection scheme of the strain of FBG, where the changing Bragg wavelength of the FBG reflection is converted to the intensity of reflected light to enable the 100 MHz measurement. In order to show the usefulness and reliability of the method, we report the measurements for solid oxygen, spin-controlled crystal, and volborthite, a deformed Kagom{e} quantum spin lattice, using static magnetic fields up to 7 T and non-destructive millisecond pulse magnets up to 50 T. Then, we show the application of the method for the magnetostriction measurements of CaV$_{4}$O$_{9}$, a two-dimensional antiferromagnet with spin-halves, and LaCoO$_{3}$, an anomalous spin-crossover oxide, in the megagauss fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا