Do you want to publish a course? Click here

When do Word Embeddings Accurately Reflect Surveys on our Beliefs About People?

118   0   0.0 ( 0 )
 Added by Kenneth Joseph
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Social biases are encoded in word embeddings. This presents a unique opportunity to study society historically and at scale, and a unique danger when embeddings are used in downstream applications. Here, we investigate the extent to which publicly-available word embeddings accurately reflect beliefs about certain kinds of people as measured via traditional survey methods. We find that biases found in word embeddings do, on average, closely mirror survey data across seventeen dimensions of social meaning. However, we also find that biases in embeddings are much more reflective of survey data for some dimensions of meaning (e.g. gender) than others (e.g. race), and that we can be highly confident that embedding-based measures reflect survey data only for the most salient biases.



rate research

Read More

Several variants of deep neural networks have been successfully employed for building parametric models that project variable-duration spoken word segments onto fixed-size vector representations, or acoustic word embeddings (AWEs). However, it remains unclear to what degree we can rely on the distance in the emerging AWE space as an estimate of word-form similarity. In this paper, we ask: does the distance in the acoustic embedding space correlate with phonological dissimilarity? To answer this question, we empirically investigate the performance of supervised approaches for AWEs with different neural architectures and learning objectives. We train AWE models in controlled settings for two languages (German and Czech) and evaluate the embeddings on two tasks: word discrimination and phonological similarity. Our experiments show that (1) the distance in the embedding space in the best cases only moderately correlates with phonological distance, and (2) improving the performance on the word discrimination task does not necessarily yield models that better reflect word phonological similarity. Our findings highlight the necessity to rethink the current intrinsic evaluations for AWEs.
108 - Shuoyang Ding , Kevin Duh 2018
Using pre-trained word embeddings as input layer is a common practice in many natural language processing (NLP) tasks, but it is largely neglected for neural machine translation (NMT). In this paper, we conducted a systematic analysis on the effect of using pre-trained source-side monolingual word embedding in NMT. We compared several strategies, such as fixing or updating the embeddings during NMT training on varying amounts of data, and we also proposed a novel strategy called dual-embedding that blends the fixing and updating strategies. Our results suggest that pre-trained embeddings can be helpful if properly incorporated into NMT, especially when parallel data is limited or additional in-domain monolingual data is readily available.
This work lists and describes the main recent strategies for building fixed-length, dense and distributed representations for words, based on the distributional hypothesis. These representations are now commonly called word embeddings and, in addition to encoding surprisingly good syntactic and semantic information, have been proven useful as extra features in many downstream NLP tasks.
Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve language model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.
Acoustic word embedding models map variable duration speech segments to fixed dimensional vectors, enabling efficient speech search and discovery. Previous work explored how embeddings can be obtained in zero-resource settings where no labelled data is available in the target language. The current best approach uses transfer learning: a single supervised multilingual model is trained using labelled data from multiple well-resourced languages and then applied to a target zero-resource language (without fine-tuning). However, it is still unclear how the specific choice of training languages affect downstream performance. Concretely, here we ask whether it is beneficial to use training languages related to the target. Using data from eleven languages spoken in Southern Africa, we experiment with adding data from different language families while controlling for the amount of data per language. In word discrimination and query-by-example search evaluations, we show that training on languages from the same family gives large improvements. Through finer-grained analysis, we show that training on even just a single related language gives the largest gain. We also find that adding data from unrelated languages generally doesnt hurt performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا