No Arabic abstract
The Frank-Wolfe method solves smooth constrained convex optimization problems at a generic sublinear rate of $mathcal{O}(1/T)$, and it (or its variants) enjoys accelerated convergence rates for two fundamental classes of constraints: polytopes and strongly-convex sets. Uniformly convex sets non-trivially subsume strongly convex sets and form a large variety of textit{curved} convex sets commonly encountered in machine learning and signal processing. For instance, the $ell_p$-balls are uniformly convex for all $p > 1$, but strongly convex for $pin]1,2]$ only. We show that these sets systematically induce accelerated convergence rates for the original Frank-Wolfe algorithm, which continuously interpolate between known rates. Our accelerated convergence rates emphasize that it is the curvature of the constraint sets -- not just their strong convexity -- that leads to accelerated convergence rates. These results also importantly highlight that the Frank-Wolfe algorithm is adaptive to much more generic constraint set structures, thus explaining faster empirical convergence. Finally, we also show accelerated convergence rates when the set is only locally uniformly convex and provide similar results in online linear optimization.
We study stochastic projection-free methods for constrained optimization of smooth functions on Riemannian manifolds, i.e., with additional constraints beyond the parameter domain being a manifold. Specifically, we introduce stochastic Riemannian Frank-Wolfe methods for nonconvex and geodesically convex problems. We present algorithms for both purely stochastic optimization and finite-sum problems. For the latter, we develop variance-reduced methods, including a Riemannian adaptation of the recently proposed Spider technique. For all settings, we recover convergence rates that are comparable to the best-known rates for their Euclidean counterparts. Finally, we discuss applications to two classic tasks: The computation of the Karcher mean of positive definite matrices and Wasserstein barycenters for multivariate normal distributions. For both tasks, stochastic Fw methods yield state-of-the-art empirical performance.
We consider continuous-time dynamics for distributed optimization with set constraints in the note. To handle the computational complexity of projection-based dynamics due to solving a general quadratic optimization subproblem with projection, we propose a distributed projection-free dynamics by employing the Frank-Wolfe method, also known as the conditional gradient algorithm. The process searches a feasible descent direction with solving an alternative linear optimization instead of a quadratic one. To make the algorithm implementable over weight-balanced digraphs, we design one dynamics for the consensus of local decision variables and another dynamics of auxiliary variables to track the global gradient. Then we prove the convergence of the dynamical systems to the optimal solution, and provide detailed numerical comparisons with both projection-based dynamics and other distributed projection-free algorithms.
Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is a convex set in R^(N+1). The iterative optimization approach starts with an arbitrary initial estimate in R^(N+1) and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp, p<1 can be handled by using the supporting hyperplane concept.
The Euclidean space notion of convex sets (and functions) generalizes to Riemannian manifolds in a natural sense and is called geodesic convexity. Extensively studied computational problems such as convex optimization and sampling in convex sets also have meaningful counterparts in the manifold setting. Geodesically convex optimization is a well-studied problem with ongoing research and considerable recent interest in machine learning and theoretical computer science. In this paper, we study sampling and convex optimization problems over manifolds of non-negative curvature proving polynomial running time in the dimension and other relevant parameters. Our algorithms assume a warm start. We first present a random walk based sampling algorithm and then combine it with simulated annealing for solving convex optimization problems. To our knowledge, these are the first algorithms in the general setting of positively curved manifolds with provable polynomial guarantees under reasonable assumptions, and the first study of the connection between sampling and optimization in this setting.
In this paper we present a new algorithmic realization of a projection-based scheme for general convex constrained optimization problem. The general idea is to transform the original optimization problem to a sequence of feasibility problems by iteratively constraining the objective function from above until the feasibility problem is inconsistent. For each of the feasibility problems one may apply any of the existing projection methods for solving it. In particular, the scheme allows the use of subgradient projections and does not require exact projections onto the constraints sets as in existing similar methods. We also apply the newly introduced concept of superiorization to optimization formulation and compare its performance to our scheme. We provide some numerical results for convex quadratic test problems as well as for real-life optimization problems coming from medical treatment planning.