Do you want to publish a course? Click here

Sampling and Optimization on Convex Sets in Riemannian Manifolds of Non-Negative Curvature

72   0   0.0 ( 0 )
 Added by Abhishek Shetty
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The Euclidean space notion of convex sets (and functions) generalizes to Riemannian manifolds in a natural sense and is called geodesic convexity. Extensively studied computational problems such as convex optimization and sampling in convex sets also have meaningful counterparts in the manifold setting. Geodesically convex optimization is a well-studied problem with ongoing research and considerable recent interest in machine learning and theoretical computer science. In this paper, we study sampling and convex optimization problems over manifolds of non-negative curvature proving polynomial running time in the dimension and other relevant parameters. Our algorithms assume a warm start. We first present a random walk based sampling algorithm and then combine it with simulated annealing for solving convex optimization problems. To our knowledge, these are the first algorithms in the general setting of positively curved manifolds with provable polynomial guarantees under reasonable assumptions, and the first study of the connection between sampling and optimization in this setting.



rate research

Read More

We develop a new Riemannian descent algorithm that relies on momentum to improve over existing first-order methods for geodesically convex optimization. In contrast, accelerated convergence rates proved in prior work have only been shown to hold for geodesically strongly-convex objective functions. We further extend our algorithm to geodesically weakly-quasi-convex objectives. Our proofs of convergence rely on a novel estimate sequence that illustrates the dependency of the convergence rate on the curvature of the manifold. We validate our theoretical results empirically on several optimization problems defined on the sphere and on the manifold of positive definite matrices.
We consider optimization problems on Riemannian manifolds with equality and inequality constraints, which we call Riemannian nonlinear optimization (RNLO) problems. Although they have numerous applications, the existing studies on them are limited especially in terms of algorithms. In this paper, we propose Riemannian sequential quadratic optimization (RSQO) that uses a line-search technique with an ell_1 penalty function as an extension of the standard SQO algorithm for constrained nonlinear optimization problems in Euclidean spaces to Riemannian manifolds. We prove its global convergence to a Karush-Kuhn-Tucker point of the RNLO problem by means of parallel transport and the exponential mapping. Furthermore, we establish its local quadratic convergence by analyzing the relationship between sequences generated by RSQO and the Riemannian Newton method. Ours is the first algorithm that has both global and local convergence properties for constrained nonlinear optimization on Riemannian manifolds. Empirical results show that RSQO finds solutions more stably and with higher accuracy compared with the existing Riemannian penalty and augmented Lagrangian methods.
101 - Melanie Weber , Suvrit Sra 2019
We study stochastic projection-free methods for constrained optimization of smooth functions on Riemannian manifolds, i.e., with additional constraints beyond the parameter domain being a manifold. Specifically, we introduce stochastic Riemannian Frank-Wolfe methods for nonconvex and geodesically convex problems. We present algorithms for both purely stochastic optimization and finite-sum problems. For the latter, we develop variance-reduced methods, including a Riemannian adaptation of the recently proposed Spider technique. For all settings, we recover convergence rates that are comparable to the best-known rates for their Euclidean counterparts. Finally, we discuss applications to two classic tasks: The computation of the Karcher mean of positive definite matrices and Wasserstein barycenters for multivariate normal distributions. For both tasks, stochastic Fw methods yield state-of-the-art empirical performance.
The Frank-Wolfe method solves smooth constrained convex optimization problems at a generic sublinear rate of $mathcal{O}(1/T)$, and it (or its variants) enjoys accelerated convergence rates for two fundamental classes of constraints: polytopes and strongly-convex sets. Uniformly convex sets non-trivially subsume strongly convex sets and form a large variety of textit{curved} convex sets commonly encountered in machine learning and signal processing. For instance, the $ell_p$-balls are uniformly convex for all $p > 1$, but strongly convex for $pin]1,2]$ only. We show that these sets systematically induce accelerated convergence rates for the original Frank-Wolfe algorithm, which continuously interpolate between known rates. Our accelerated convergence rates emphasize that it is the curvature of the constraint sets -- not just their strong convexity -- that leads to accelerated convergence rates. These results also importantly highlight that the Frank-Wolfe algorithm is adaptive to much more generic constraint set structures, thus explaining faster empirical convergence. Finally, we also show accelerated convergence rates when the set is only locally uniformly convex and provide similar results in online linear optimization.
Let $M$ be a complete, simply connected Riemannian manifold with negative curvature. We obtain some Moser-Trudinger inequalities with sharp constants on $M$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا