No Arabic abstract
A graph where each vertex $v$ has a list $L(v)$ of available colors is $L$-colorable if there is a proper coloring such that the color of $v$ is in $L(v)$ for each $v$. A graph is $k$-choosable if every assignment $L$ of at least $k$ colors to each vertex guarantees an $L$-coloring. Given a list assignment $L$, an $L$-request for a vertex $v$ is a color $cin L(v)$. In this paper, we look at a variant of the widely studied class of precoloring extension problems from [Z. Dvov{r}ak, S. Norin, and L. Postle: List coloring with requests. J. Graph Theory 2019], wherein one must satisfy enough, as opposed to all, of the requested set of precolors. A graph $G$ is $varepsilon$-flexible for list size $k$ if for any $k$-list assignment $L$, and any set $S$ of $L$-requests, there is an $L$-coloring of $G$ satisfying an $varepsilon$-fraction of the requests in $S$. It is conjectured that planar graphs are $varepsilon$-flexible for list size $5$, yet it is proved only for list size $6$ and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masav{r}ik and show that planar graphs without $K_4^-$ are $varepsilon$-flexible for list size $5$. We also prove that planar graphs without $4$-cycles and $3$-cycle distance at least 2 are $varepsilon$-flexible for list size $4$. Finally, we introduce a new (slightly weaker) form of $varepsilon$-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are $varepsilon$-flexible for list size $5$.
A pair of non-adjacent edges is said to be separated in a circular ordering of vertices, if the endpoints of the two edges do not alternate in the ordering. The circular separation dimension of a graph $G$, denoted by $pi^circ(G)$, is the minimum number of circular orderings of the vertices of $G$ such that every pair of non-adjacent edges is separated in at least one of the circular orderings. This notion is introduced by Loeb and West in their recent paper. In this article, we consider two subclasses of planar graphs, namely $2$-outerplanar graphs and series-parallel graphs. A $2$-outerplanar graph has a planar embedding such that the subgraph obtained by removal of the vertices of the exterior face is outerplanar. We prove that if $G$ is $2$-outerplanar then $pi^circ(G) = 2$. We also prove that if $G$ is a series-parallel graph then $pi^circ(G) leq 2$.
The complexity of graph isomorphism (GraphIso) is a famous unresolved problem in theoretical computer science. For graphs $G$ and $H$, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (ListIso) is NP-complete: for each $u in V(G)$, we are given a list ${mathfrak L}(u) subseteq V(H)$ of possible images of $u$. After 35 years, we revive the study of this problem and consider which results for GraphIso translate to ListIso. We prove the following: 1) When GraphIso is GI-complete for a class of graphs, it translates into NP-completeness of ListIso. 2) Combinatorial algorithms for GraphIso translate into algorithms for ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, bounded genus graphs, and bounded treewidth graphs. 3) Algorithms based on group theory do not translate: ListIso remains NP-complete for cubic colored graphs with sizes of color classes bounded by 8. Also, ListIso allows to classify results for the graph isomorphism problem. Some algorithms are robust and translate to ListIso. A fundamental problem is to construct a combinatorial polynomial-time algorithm for cubic graph isomorphism, avoiding group theory. By the 3rd result, ListIso is NP-hard for them, so no robust algorithm for cubic graph isomorphism exists, unless P = NP.
A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. NIC-planarity generalizes IC-planarity, which allows a vertex to be incident to at most one crossing edge, and specializes 1-planarity, which only requires at most one crossing per edge. We characterize embeddings of maximal NIC-planar graphs in terms of generalized planar dual graphs. The characterization is used to derive tight bounds on the density of maximal NIC-planar graphs which ranges between 3.2(n-2) and 3.6(n-2). Further, we prove that optimal NIC-planar graphs with 3.6(n-2) edges have a unique embedding and can be recognized in linear time, whereas the general recognition problem of NIC-planar graphs is NP-complete. In addition, we show that there are NIC-planar graphs that do not admit right angle crossing drawings, which distinguishes NIC-planar from IC-planar graphs.
Let $G$ be a ${C_4, C_5}$-free planar graph with a list assignment $L$. Suppose a preferred color is given for some of the vertices. We prove that if all lists have size at least four, then there exists an $L$-coloring respecting at least a constant fraction of the preferences.
A graph $G$ is said to be the intersection of graphs $G_1,G_2,ldots,G_k$ if $V(G)=V(G_1)=V(G_2)=cdots=V(G_k)$ and $E(G)=E(G_1)cap E(G_2)capcdotscap E(G_k)$. For a graph $G$, $mathrm{dim}_{COG}(G)$ (resp. $mathrm{dim}_{TH}(G)$) denotes the minimum number of cographs (resp. threshold graphs) whose intersection gives $G$. We present several new bounds on these parameters for general graphs as well as some special classes of graphs. It is shown that for any graph $G$: (a) $mathrm{dim}_{COG}(G)leqmathrm{tw}(G)+2$, (b) $mathrm{dim}_{TH}(G)leqmathrm{pw}(G)+1$, and (c) $mathrm{dim}_{TH}(G)leqchi(G)cdotmathrm{box}(G)$, where $mathrm{tw}(G)$, $mathrm{pw}(G)$, $chi(G)$ and $mathrm{box}(G)$ denote respectively the treewidth, pathwidth, chromatic number and boxicity of the graph $G$. We also derive the exact values for these parameters for cycles and show that every forest is the intersection of two cographs. These results allow us to derive improved bounds on $mathrm{dim}_{COG}(G)$ and $mathrm{dim}_{TH}(G)$ when $G$ belongs to some special graph classes.