No Arabic abstract
Let $G$ be a ${C_4, C_5}$-free planar graph with a list assignment $L$. Suppose a preferred color is given for some of the vertices. We prove that if all lists have size at least four, then there exists an $L$-coloring respecting at least a constant fraction of the preferences.
As usual, $P_n$ ($n geq 1$) denotes the path on $n$ vertices, and $C_n$ ($n geq 3$) denotes the cycle on $n$ vertices. For a family $mathcal{H}$ of graphs, we say that a graph $G$ is $mathcal{H}$-free if no induced subgraph of $G$ is isomorphic to any graph in $mathcal{H}$. We present a decomposition theorem for the class of $(P_7,C_4,C_5)$-free graphs; in fact, we give a complete structural characterization of $(P_7,C_4,C_5)$-free graphs that do not admit a clique-cutset. We use this decomposition theorem to show that the class of $(P_7,C_4,C_5)$-free graphs is $chi$-bounded by a linear function (more precisely, every $(P_7,C_4,C_5)$-free graph $G$ satisfies $chi(G) leq frac{3}{2} omega(G)$). We also use the decomposition theorem to construct an $O(n^3)$ algorithm for the minimum coloring problem, an $O(n^2m)$ algorithm for the maximum weight stable set problem, and an $O(n^3)$ algorithm for the maximum weight clique problem for this class, where $n$ denotes the number of vertices and $m$ the number of edges of the input graph.
Let $mathscr{G}$ be the class of plane graphs without triangles normally adjacent to $8^{-}$-cycles, without $4$-cycles normally adjacent to $6^{-}$-cycles, and without normally adjacent $5$-cycles. In this paper, it is showed that every graph in $mathscr{G}$ is $3$-choosable. Instead of proving this result, we directly prove a stronger result in the form of weakly DP-$3$-coloring. The main theorem improves the results in [J. Combin. Theory Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently, every planar graph without $4$-, $6$-, $8$-cycles is $3$-choosable, and every planar graph without $4$-, $5$-, $7$-, $8$-cycles is $3$-choosable. In the third section, it is proved that the vertex set of every graph in $mathscr{G}$ can be partitioned into an independent set and a set that induces a forest, which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In the final section, tightness is considered.
DP-coloring is a generalization of list coloring, which was introduced by Dvov{r}{a}k and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang [Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is 3-choosable. Liu et al. [Discrete Math. 342 (2019) 178--189] showed that every planar graph without 4-, 5-, 6- and 9-cycles is DP-3-colorable. In this paper, we show that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is DP-3-colorable, which generalizes these results. Yu et al. gave three Bordeaux-type results by showing that (i) every planar graph with the distance of triangles at least three and no 4-, 5-cycles is DP-3-colorable; (ii) every planar graph with the distance of triangles at least two and no 4-, 5-, 6-cycles is DP-3-colorable; (iii) every planar graph with the distance of triangles at least two and no 5-, 6-, 7-cycles is DP-3-colorable. We also give two Bordeaux-type results in the last section: (i) every plane graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is DP-3-colorable; (ii) every plane graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is DP-3-colorable.
For which graphs $F$ is there a sparse $F$-counting lemma in $C_4$-free graphs? We are interested in identifying graphs $F$ with the property that, roughly speaking, if $G$ is an $n$-vertex $C_4$-free graph with on the order of $n^{3/2}$ edges, then the density of $F$ in $G$, after a suitable normalization, is approximately at least the density of $F$ in an $epsilon$-regular approximation of $G$. In recent work, motivated by applications in extremal and additive combinatorics, we showed that $C_5$ has this property. Here we construct a family of graphs with the property.
We introduce a new approach and prove that the maximum number of triangles in a $C_5$-free graph on $n$ vertices is at most $$(1 + o(1)) frac{1}{3 sqrt 2} n^{3/2}.$$ We also show a connection to $r$-uniform hypergraphs without (Berge) cycles of length less than six, and estimate their maximum possible size.