No Arabic abstract
In this work we describe preferential Description Logics of typicality, a nonmonotonic extension of standard Description Logics by means of a typicality operator T allowing to extend a knowledge base with inclusions of the form T(C) v D, whose intuitive meaning is that normally/typically Cs are also Ds. This extension is based on a minimal model semantics corresponding to a notion of rational closure, built upon preferential models. We recall the basic concepts underlying preferential Description Logics. We also present two extensions of the preferential semantics: on the one hand, we consider probabilistic extensions, based on a distributed semantics that is suitable for tackling the problem of commonsense concept combination, on the other hand, we consider other strengthening of the rational closure semantics and construction to avoid the so-called blocking of property inheritance problem.
We define the notion of rational closure in the context of Description Logics extended with a tipicality operator. We start from ALC+T, an extension of ALC with a typicality operator T: intuitively allowing to express concepts of the form T(C), meant to select the most normal instances of a concept C. The semantics we consider is based on rational model. But we further restrict the semantics to minimal models, that is to say, to models that minimise the rank of domain elements. We show that this semantics captures exactly a notion of rational closure which is a natural extension to Description Logics of Lehmann and Magidors original one. We also extend the notion of rational closure to the Abox component. We provide an ExpTime algorithm for computing the rational closure of an Abox and we show that it is sound and complete with respect to the minimal model semantics.
We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that there is probability p about the fact that typical Cs are Ds. As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.
As a contribution to the challenge of building game-playing AI systems, we develop and analyse a formal language for representing and reasoning about strategies. Our logical language builds on the existing general Game Description Language (GDL) and extends it by a standard modality for linear time along with two dual connectives to express preferences when combining strategies. The semantics of the language is provided by a standard state-transition model. As such, problems that require reasoning about games can be solved by the standard methods for reasoning about actions and change. We also endow the language with a specific semantics by which strategy formulas are understood as move recommendations for a player. To illustrate how our formalism supports automated reasoning about strategies, we demonstrate two example methods of implementation/: first, we formalise the semantic interpretation of our language in conjunction with game rules and strategy rules in the Situation Calculus; second, we show how the reasoning problem can be solved with Answer Set Programming.
We investigate the decidability and computational complexity of conservative extensions and the related notions of inseparability and entailment in Horn description logics (DLs) with inverse roles. We consider both query conservative extensions, defined by requiring that the answers to all conjunctive queries are left unchanged, and deductive conservative extensions, which require that the entailed concept inclusions, role inclusions, and functionality assertions do not change. Upper bounds for query conservative extensions are particularly challenging because characterizations in terms of unbounded homomorphisms between universal models, which are the foundation of the standard approach to establishing decidability, fail in the presence of inverse roles. We resort to a characterization that carefully mixes unbounded and bounded homomorphisms and enables a decision procedure that combines tree automata and a mosaic technique. Our main results are that query conservative extensions are 2ExpTime-complete in all DLs between ELI and Horn-ALCHIF and between Horn-ALC and Horn-ALCHIF, and that deductive conservative extensions are 2ExpTime-complete in all DLs between ELI and ELHIF_bot. The same results hold for inseparability and entailment.
We study FO-rewritability of conjunctive queries in the presence of ontologies formulated in a description logic between EL and Horn-SHIF, along with related query containment problems. Apart from providing characterizations, we establish complexity results ranging from ExpTime via NExpTime to 2ExpTime, pointing out several interesting effects. In particular, FO-rewriting is more complex for conjunctive queries than for atomic queries when inverse roles are present, but not otherwise.