Do you want to publish a course? Click here

Revealing the single electron pocket of FeSe in a single orthorhombic domain

114   0   0.0 ( 0 )
 Added by Timur Kim
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the electronic structure of FeSe from within individual orthorhombic domains. Enabled by an angle-resolved photoemission spectroscopy beamline with a highly focused beamspot (nano-ARPES), we identify clear stripe-like orthorhombic domains in FeSe with a length scale of approximately 1-5~$mu$m. Our photoemission measurements of the Fermi surface and band structure within individual domains reveal a single electron pocket at the Brillouin zone corner. This result provides clear evidence for a one-electron pocket electronic structure of FeSe, observed without the application of uniaxial strain, and calls for further theoretical insight into this unusual Fermi surface topology. Our results also showcase the potential of nano-ARPES for the study of correlated materials with local domain structures.



rate research

Read More

The electronic structure of the enigmatic iron-based superconductor FeSe has puzzled researchers since spectroscopic probes failed to observe the expected electron pocket at the $Y$ point in the 1-Fe Brillouin zone. It has been speculated that this pocket, essential for an understanding of the superconducting state, is either absent or incoherent. Here, we perform a theoretical study of the preferred nematic order originating from nearest-neighbor Coulomb interactions in an electronic model relevant for FeSe. We find that at low temperatures the dominating nematic components are of inter-orbital $d_{xz}-d_{xy}$ and $d_{yz}-d_{xy}$ character, with spontaneously broken amplitudes for these two components. This inter-orbital nematic order naturally leads to distinct hybridization gaps at the $X$ and $Y$ points of the 1-Fe Brillouin zone, and may thereby produce highly anisotropic Fermi surfaces with only a single electron pocket at one of these momentum-space locations. The associated superconducting gap structure obtained with the generated low-energy electronic band structure from spin-fluctuation mediated pairing agrees well with that measured experimentally. Finally, from a comparison of the computed spin susceptibility to available neutron scattering data, we discuss the necessity of additional self-energy effects, and explore the role of orbital-dependent quasiparticle weights as a minimal means to include them.
The origin of spontaneous electronic nematic ordering provides important information for understanding iron-based superconductors. Here, we analyze a scenario where the $d_{xy}$ orbital strongly contributes to nematic ordering in FeSe. We show that the addition of $d_{xy}$ nematicity to a pure $d_{xz}/d_{yz}$ order provides a natural explanation for the unusual Fermi surface and correctly reproduces the strongly anisotropic momentum dependence of the superconducting gap. We predict a Lifshitz transition of an electron pocket mediated by temperature and sulphur doping, whose signatures we discuss by analysing available experimental data. We present the variation of momentum dependence of the superconducting gap upon suppression of nematicity. Our quantitatively accurate model yields the transition from tetragonal to nematic FeSe and the FeSe$_{1-x}$S$_{x}$ series, and puts strong constraints on possible nematic mechanisms.
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high resolution measurements on the structurally simpler cuprate HgBa2CuO4+d (Hg1201), which features one CuO2 plane per unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunneling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modeling of these results indicates that biaxial charge-density-wave within each CuO2 plane is responsible for the reconstruction, and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.
The mystery of the normal state in the underdoped cuprates has deepened with the use of newer and complementary experimental probes. While photoemission studies have revealed solely `Fermi arcs centered on nodal points in the Brillouin zone at which holes aggregate upon doping, more recent quantum oscillation experiments have been interpreted in terms of an ambipolar Fermi surface, that includes sections containing electron carriers located at the antinodal region. To address the question of whether an ambipolar Fermi surface truly exists, here we utilize measurements of the second harmonic quantum oscillations, which reveal that the amplitude of these oscillations arises mainly from oscillations in the chemical potential, providing crucial information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In particular, the detailed relationship between the second harmonic amplitude and the fundamental amplitude of the quantum oscillations leads us to the conclusion that there exists only a single underlying quasi-two dimensional Fermi surface pocket giving rise to the multiple frequency components observed via the effects of warping, bilayer splitting and magnetic breakdown. A range of studies suggest that the pocket is most likely associated with states near the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high magnetic fields.
262 - Defa Liu , Xianxin Wu , Fangsen Li 2020
The accurate theoretical description of the underlying electronic structures is essential for understanding the superconducting mechanism of iron-based superconductors. Compared to bulk FeSe, the superconducting single-layer FeSe/SrTiO3 films exhibit a distinct electronic structure consisting of only electron Fermi pockets, due to the formation of a new band gap at the Brillouin zone (BZ) corners and an indirect band gap between the BZ center and corners. Although intensive studies have been carried out, the origin of such a distinct electronic structure and its connection to bulk FeSe remain unclear. Here we report a systematic study on the temperature evolution of the electronic structure in single-layer FeSe/SrTiO3 films by angle-resolved photoemission spectroscopy. A temperature-induced electronic phase transition was clearly observed at 200 K, above which the electronic structure of single-layer FeSe/SrTiO3 films restored to that of bulk FeSe, characterized by the closing of the new band gap and the vanishing of the indirect band gap. Moreover, the interfacial charge transfer effect induced band shift of ~ 60 meV was determined for the first time. These observations not only show the first direct evidence that the electronic structure of single-layer FeSe/SrTiO3 films originates from bulk FeSe through a combined effect of an electronic phase transition and an interfacial charge transfer, but also provide a quantitative basis for theoretical models in describing the electronic structure and understanding the superconducting mechanism in single-layer FeSe/SrTiO3 films.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا