Do you want to publish a course? Click here

Weyl orbits without an external magnetic field

235   0   0.0 ( 0 )
 Added by Valerio Peri
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Weyl semimetals in a magnetic field give rise to interesting non-local electronic orbits: the ballistic transport through the bulk enabled by the chiral Landau levels is combined with a momentum-space sliding along the surface Fermi-arc driven by the Lorentz force. Bulk chiral Landau levels can also be induced by axial fields whose sign depends on the chirality of the Weyl point. However, the microscopic perturbations that give rise to them can be described in terms of gauge fields only in the low-energy sectors around the Weyl points. In addition, since pseudo-fields are intrinsic, there is no apparent reason for a Lorentz force that causes sliding along the Fermi-arcs. Therefore, the existence of non-local orbits driven exclusively by pseudo-fields is not obvious. Here, we show that for systems with at least four Weyl points in the bulk spectrum, non-local orbits can be induced by axial fields alone. We discuss the underlying mechanisms by a combination of analytical semi-classical theory, the microscopic numerical study of wave-packet dynamics, and a surface Greens function analysis.

rate research

Read More

We investigate the effect of an external magnetic field on the physical properties of the acceptor hole states associated with single Mn acceptors placed near the (110) surface of GaAs. Crosssectional scanning tunneling microscopy images of the acceptor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported by theoretical calculations based on a tightbinding model of Mn acceptors in GaAs. For Mn acceptors on the (110) surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantly the magnetic anisotropy landscape. However the acceptor hole wavefunction is strongly localized around the Mn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mn acceptors placed on deeper layers below the surface, the acceptor hole wavefunction is more delocalized and the corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However the magnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 T can hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis. We predict that substantially larger magnetic fields are required to observe a significant field-dependence of the tunneling current for impurities located several layers below the GaAs surface.
We investigate theoretically the switching characteristics of semiconducting carbon nanotubes connected to gold electrodes under an external (gate) electric field. We find that the external introduction of holes is necessary to account for the experimental observations. We identify metal-induced-gap states (MIGS) at the contacts and find that the MIGS of an undoped tube would not significantly affect the switching behavior, even for very short tube lengths. We also explore the miniaturization limits of nanotube transistors, and, on the basis of their switching ratio, we conclude that transistors with channels as short as 50AA would have adequate switching characteristics.
We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001). Using high resolution angle-resolved photoemission spectroscopy we demonstrate openings of the spin-orbit induced electronic band gaps near the Fermi level. The band gaps and thus the Fermi surface can be manipulated by changing the remanent magnetization direction. The effect is of the order of $Delta$E = 100 meV and $Delta text {k} = 0.1,text{AA}^{-1}$. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state, rather than caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets.
We study the binding energies and optical properties of direct and indirect excitons in monolayers and double layer heterostructures of Xenes: silicene, germanene, and stanene. It is demonstrated that an external electric field can be used to tune the eigenenergies and optical properties of excitons by changing the effective mass of charge carriers. The Schr{o}dinger equation with field-dependent exciton reduced mass is solved by using the Rytova-Keldysh (RK) potential for direct excitons, while both the RK and Coulomb potentials are used for indirect excitons. It is shown that for indirect excitons, the choice of interaction potential can cause huge differences in the eigenenergies at large electric fields and significant differences even at small electric fields. Furthermore, our calculations show that the choice of material parameters has a significant effect on the binding energies and optical properties of direct and indirect excitons. These calculations contribute to the rapidly growing body of research regarding the excitonic and optical properties of this new class of two dimensional semiconductors.
An ultra-fast quench is applied to binary mixtures of superparamagnetic colloidal particles confined at a two-dimensional water-air interface by a sudden increase of an external magnetic field. This quench realizes a virtually instantaneous cooling which is impossible in molecular systems. Using real-space experiments, the relaxation behavior after the quench is explored. Local crystallites with triangular and square symmetry are formed on different time scales and the correlation peak amplitude of the small particles evolves nonmonotonically in time in agreement with Brownian dynamics computer simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا