No Arabic abstract
The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power of quantum computers. Here, we address this problem in two aspects. In the fault-tolerant regime, we optimize the $rzgate$ and $tgate$ gate counts along with the ancilla qubit counts required, assuming the use of a product-formula algorithm for implementation. We obtain a savings ratio of two in the gate counts and a savings ratio of eleven in the number of ancilla qubits required over the state of the art. In the pre-fault tolerant regime, we optimize the two-qubit gate counts, assuming the use of the variational quantum eigensolver (VQE) approach. Specific to the latter, we present a framework that enables bootstrapping the VQE progression towards the convergence of the ground-state energy of the fermionic system. This framework, based on perturbation theory, is capable of improving the energy estimate at each cycle of the VQE progression, by about a factor of three closer to the known ground-state energy compared to the standard VQE approach in the test-bed, classically-accessible system of the water molecule. The improved energy estimate in turn results in a commensurate level of savings of quantum resources, such as the number of qubits and quantum gates, required to be within a pre-specified tolerance from the known ground-state energy. We also explore a suite of generalized transformations of fermion to qubit operators and show that resource-requirement savings of up to more than $20%$, in small instances, is possible.
Fault-tolerant quantum computation promises to solve outstanding problems in quantum chemistry within the next decade. Realizing this promise requires scalable tools that allow users to translate descriptions of electronic structure problems to optimized quantum gate sequences executed on physical hardware, without requiring specialized quantum computing knowledge. To this end, we present a quantum chemistry library, under the open-source MIT license, that implements and enables straightforward use of state-of-art quantum simulation algorithms. The library is implemented in Q#, a language designed to express quantum algorithms at scale, and interfaces with NWChem, a leading electronic structure package. We define a standardized schema for this interface, Broombridge, that describes second-quantized Hamiltonians, along with metadata required for effective quantum simulation, such as trial wavefunction ansatzes. This schema is generated for arbitrary molecules by NWChem, conveniently accessible, for instance, through Docker containers and a recently developed web interface EMSL Arrows. We illustrate use of the library with various examples, including ground- and excited-state calculations for LiH, H$_{10}$, and C$_{20}$ with an active-space simplification, and automatically obtain resource estimates for classically intractable examples.
Computational chemistry is the leading application to demonstrate the advantage of quantum computing in the near term. However, large-scale simulation of chemical systems on quantum computers is currently hindered due to a mismatch between the computational resource needs of the program and those available in todays technology. In this paper we argue that significant new optimizations can be discovered by co-designing the application, compiler, and hardware. We show that multiple optimization objectives can be coordinated through the key abstraction layer of Pauli strings, which are the basic building blocks of computational chemistry programs. In particular, we leverage Pauli strings to identify critical program components that can be used to compress program size with minimal loss of accuracy. We also leverage the structure of Pauli string simulation circuits to tailor a novel hardware architecture and compiler, leading to significant execution overhead reduction by up to 99%. While exploiting the high-level domain knowledge reveals significant optimization opportunities, our hardware/software framework is not tied to a particular program instance and can accommodate the full family of computational chemistry problems with such structure. We believe the co-design lessons of this study can be extended to other domains and hardware technologies to hasten the onset of quantum advantage.
Quantum computing, an innovative computing system carrying prominent processing rate, is meant to be the solutions to problems in many fields. Among these realms, the most intuitive application is to help chemical researchers correctly de-scribe strong correlation and complex systems, which are the great challenge in current chemistry simulation. In this paper, we will present a standalone quantum simulation tool for chemistry, ChemiQ, which is designed to assist people carry out chemical research or molecular calculation on real or virtual quantum computers. Under the idea of modular programming in C++ language, the software is designed as a full-stack tool without third-party physics or chemistry application packages. It provides services as follow: visually construct molecular structure, quickly simulate ground-state energy, scan molecular potential energy curve by distance or angle, study chemical reaction, and return calculation results graphically after analysis.
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of parallel implementations of quantum gates for efficient quantum circuit implementations. Here, we focus on the recently invented efficient, arbitrary, simultaneously entangling (EASE) gates, available on a trapped-ion quantum computer. Leveraging its flexibility in selecting arbitrary pairs of qubits to be coupled with any degrees of entanglement, all in parallel, we show a $n$-qubit Clifford circuit can be implemented using $6log(n)$ EASE gates, a $n$-qubit multiply-controlled NOT gate can be implemented using $3n/2$ EASE gates, and a $n$-qubit permutation can be implemented using six EASE gates. We discuss their implications to near-term quantum chemistry simulations and the state of the art pattern matching algorithm. Given Clifford + multiply-controlled NOT gates form a universal gate set for quantum computing, our results imply efficient quantum computation by EASE gates, in general.
Quantum computational chemistry is a potential application of quantum computers that is expected to effectively solve several quantum-chemistry problems, particularly the electronic structure problem. Quantum computational chemistry can be compared to the conventional computational devices. This review comprehensively investigates the applications and overview of quantum computational chemistry, including a review of the Hartree-Fock method for quantum information scientists. Quantum algorithms, quantum phase estimation, and variational quantum eigensolver, have been applied to the post-Hartree-Fock method.