No Arabic abstract
Fast radio bursts (FRBs) are mysterious radio bursts with a time scale of approximately milliseconds. Two populations of FRB, namely repeating and non-repeating FRBs, are observationally identified. However, the differences between these two and their origins are still cloaked in mystery. Here we show the time-integrated luminosity-duration ($L_{ u}$-$w_{rm int,rest}$) relations and luminosity functions (LFs) of repeating and non-repeating FRBs in the FRB Catalogue project. These two populations are obviously separated in the $L_{ u}$-$w_{rm int,rest}$ plane with distinct LFs, i.e., repeating FRBs have relatively fainter $L_{ u}$ and longer $w_{rm int,rest}$ with a much lower LF. In contrast with non-repeating FRBs, repeating FRBs do not show any clear correlation between $L_{ u}$ and $w_{rm int,rest}$. These results suggest essentially different physical origins of the two. The faint ends of the LFs of repeating and non-repeating FRBs are higher than volumetric occurrence rates of neutron-star mergers and accretion-induced collapse (AIC) of white dwarfs, and are consistent with those of soft gamma-ray repeaters (SGRs), type Ia supernovae, magnetars, and white-dwarf mergers. This indicates two possibilities: either (i) faint non-repeating FRBs originate in neutron-star mergers or AIC and are actually repeating during the lifetime of the progenitor, or (ii) faint non-repeating FRBs originate in any of SGRs, type Ia supernovae, magnetars, and white-dwarf mergers. The bright ends of LFs of repeating and non-repeating FRBs are lower than any candidates of progenitors, suggesting that bright FRBs are produced from a very small fraction of the progenitors regardless of the repetition. Otherwise, they might originate in unknown progenitors.
Nature of dark energy remains unknown. Especially, to constrain the time variability of the dark-energy, a new, standardisable candle that can reach more distant Universe has been awaited. Here we propose a new distance measure using fast radio bursts (FRBs), which are a new emerging population of $sim$ ms time scale radio bursts that can reach high-$z$ in quantity. We show an empirical positive correlation between the time-integrated luminosity (L$_{ u}$) and rest-frame intrinsic duration ($w_{rm int,rest}$) of FRBs. The L$_{ u}-w_{rm int,rest}$ correlation is with a weak strength but statistically very significant, i.e., Pearson coefficient is $sim$ 0.5 with p-value of $sim$0.038, despite the smallness of the current sample. This correlation can be used to measure intrinsic luminosity of FRBs from the observed $w_{rm int,rest}$. By comparing the luminosity with observed flux, we measure luminosity distances to FRBs, and thereby construct the Hubble diagram. This FRB cosmology with the L$_{ u}-w_{rm int,rest}$ relation has several advantages over SNe Ia, Gamma-Ray Burst (GRB), and well-known FRB dispersion measure (DM)-$z$ cosmology; (i) access to higher redshift Universe beyond the SNe Ia, (ii) high event rate that is $sim$ 3 order of magnitude more frequent than GRBs, and (iii) it is free from the uncertainty from intergalactic electron density models, i.e., we can remove the largest uncertainty in the well-debated DM-$z$ cosmology of FRB. Our simulation suggests that the L$_{ u}-w_{rm int,rest}$ relation provides us with useful constraints on the time variability of the dark energy when the next generation radio telescopes start to find FRBs in quantity.
Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRBs as a population. We aim to detect the first two repeating FRBs: FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and characterise their repeat statistics. We also want to significantly improve the sky localisation of R2. We use the Westerbork Synthesis Radio Telescope to conduct extensive follow-up of these two repeating FRBs. The new phased-array feed system, Apertif, allows covering the entire sky position uncertainty of R2 with fine spatial resolution in one pointing. We characterise the energy distribution and the clustering of detected R1 bursts. We detected 30 bursts from R1. Our measurements indicate a dispersion measure of 563.5(2) pc cm$^{-3}$, suggesting a significant increase in DM over the past few years. We place an upper limit of 8% on the linear polarisation fraction of the brightest burst. We did not detect any bursts from R2. A single power-law might not fit the R1 burst energy distribution across the full energy range or widely separated detections. Our observations provide improved constraints on the clustering of R1 bursts. Our stringent upper limits on the linear polarisation fraction imply a significant depolarisation, either intrinsic to the emission mechanism or caused by the intervening medium, at 1400 MHz that is not observed at higher frequencies. The non-detection of any bursts from R2 implies either a highly clustered nature of the bursts, a steep spectral index, or a combination of both. Alternatively, R2 has turned off completely, either permanently or for an extended period of time.
We demonstrate the blind interferometric detection and localization of two fast radio bursts (FRBs) with 2- and 25-arcsecond precision on the 400-m baseline between the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the CHIME Pathfinder. In the same spirit as very long baseline interferometry (VLBI), the telescopes were synchronized to separate clocks, and the channelized voltage (herein referred to as baseband) data were saved to disk with correlation performed offline. The simultaneous wide field of view and high sensitivity required for blind FRB searches implies a high data rate -- 6.5 terabits per second (Tb/s) for CHIME and 0.8 Tb/s for the Pathfinder. Since such high data rates cannot be continuously saved, we buffer data from both telescopes locally in memory for $approx 40$ s, and write to disk upon receipt of a low-latency trigger from the CHIME Fast Radio Burst Instrument (CHIME/FRB). The $approx200$ deg$^2$ field of view of the two telescopes allows us to use in-field calibrators to synchronize the two telescopes without needing either separate calibrator observations or an atomic timing standard. In addition to our FRB observations, we analyze bright single pulses from the pulsars B0329+54 and B0355+54 to characterize systematic localization errors. Our results demonstrate the successful implementation of key software, triggering, and calibration challenges for CHIME/FRB Outriggers: cylindrical VLBI outrigger telescopes which, along with the CHIME telescope, will localize thousands of single FRB events to 50 milliarcsecond precision.
Since their serendipitous discovery, Fast Radio Bursts (FRBs) have garnered a great deal of attention from both observers and theorists. A new class of radio telescopes with wide fields of view have enabled a rapid accumulation of FRB observations, confirming that FRBs originate from cosmological distances. The high occurrence rate of FRBs and the development of new instruments to observe them create opportunities for FRBs to be utilized for a host of astrophysical and cosmological studies. We focus on the rare, and as yet undetected, subset of FRBs that undergo repeated bursts and are strongly gravitationally lensed by intervening structure. An extremely precise timing of burst arrival times is possible for strongly lensed repeating FRBs, and we show how this timing precision enables the search for long wavelength gravitational waves, including those sourced by supermassive black hole binary systems. The timing of burst arrival for strongly lensed repeating FRBs is sensitive to gravitational wave sources near the FRB host galaxy, which may lie at cosmological distances and would therefore be extremely challenging to detect by other means. Timing of strongly lensed FRBs can also be combined with pulsar timing array data to search for correlated time delays characteristic of gravitational waves passing through the Earth.
Fast spinning (e.g., sub-second) neutron star with ultra-strong magnetic fields (or so-called magnetar) is one of the promising origins of repeating fast radio bursts (FRBs). Here we discuss circularly polarised emissions produced by propagation effects in the magnetosphere of fast spinning magnetars. We argue that the polarisation-limiting region is well beyond the light cylinder, suggesting that wave mode coupling effects are unlikely to produce strong circular polarisation for fast spinning magnetars. Cyclotron absorption could be significant if the secondary plasma density is high. However, high degrees of circular polarisation can only be produced with large asymmetries in electrons and positrons. We draw attention to the non-detection of circular polarisation in current observations of known repeating FRBs. We suggest that the circular polarisation of FRBs could provide key information on their origins and help distinguish different radiation mechanisms.