Do you want to publish a course? Click here

QCD Phase Diagram at NICA energies: $K^+/pi^+$ horn effect and light clusters in THESEUS

70   0   0.0 ( 0 )
 Added by David Blaschke
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We discuss recent progress in the development of the three-fluid hydrodynamics-based program THESEUS towards an event generator suitable for applications to heavy-ion collisions at the intermediate energies of the planned NICA and FAIR experiments. We follow the strategy that modifications of particle distributions at the freeze-out surface in the QCD phase diagram may be mapped directly to the observable ones within a sudden freeze-out scheme. We report first results of these investigations for the production of light clusters (deuterons and tritons) which can be compared to experimental data from the HADES and the NA49 experiment and for the interpretation of the horn effect observed in the collision energy dependence of the $K^+/pi^+$ ratio. Medium effects on light cluster production in the QCD phase diagram are negligible at the highest NICA energies but shall play a dominant role at the lowest energies. A sharp horn-type signal in the $K^+/pi^+$ ratio can be obtained when the onset of Bose condensation modelled by a pion chemical potential results in an enhancement of pions at low momenta (which is seen at LHC energies) and would occur already in the NICA energy range.



rate research

Read More

Since the incident nuclei in heavy-ion collisions do not carry strangeness, the global net strangeness of the detected hadrons has to vanish. We show that there is an intimate relation between strangeness neutrality and baryon-strangeness correlations. In the context of heavy-ion collisions, the former is a consequence of quark number conservation of the strong interactions while the latter are sensitive probes of the character of QCD matter. We investigate the sensitivity of baryon-strangeness correlations on the freeze-out conditions of heavy-ion collisions by studying their dependence on temperature, baryon- and strangeness chemical potential. The impact of strangeness neutrality on the QCD equation of state at finite chemical potentials will also be discussed. We model the low-energy sector of QCD by an effective Polyakov loop enhanced quark-meson model with 2+1 dynamical quark flavors and use the functional renormalization group to account for the non-perturbative quantum fluctuations of hadrons.
We investigate the chiral phase transition in the strong coupling lattice QCD at finite temperature and density with finite coupling effects. We adopt one species of staggered fermion, and develop an analytic formulation based on strong coupling and cluster expansions. We derive the effective potential as a function of two order parameters, the chiral condensate sigma and the quark number density $rho_q$, in a self-consistent treatment of the next-to-leading order (NLO) effective action terms. NLO contributions lead to modifications of quark mass, chemical potential and the quark wave function renormalization factor. While the ratio mu_c(T=0)/Tc(mu=0) is too small in the strong coupling limit, it is found to increase as beta=2Nc/g^2 increases. The critical point is found to move in the lower T direction as beta increases. Since the vector interaction induced by $rho_q$ is shown to grow as beta, the present trend is consistent with the results in Nambu-Jona-Lasinio models. The interplay between two order parameters leads to the existence of partially chiral restored matter, where effective chemical potential is automatically adjusted to the quark excitation energy.
We estimate the chemical freeze-out of light nuclear clusters for NICA energies of above 2 A GeV. On the one hand we use results from the low energy domain of about 35 A MeV, where medium effects have been shown to be important to explain experimental results. On the high energy side of LHC energies the statistical model without medium effects has provided results for the chemical freeze-out. The two approaches extrapolated to NICA energies show a discrepancy that can be attributed to medium effects and that for the deuteron/proton ratio amounts to a factor of about three. These findings underline the importance of a detailed investigation of light cluster production at NICA energies.
The chemical freeze-out irregularities found with the most advanced hadron resonance gas model and possible signals of two QCD phase transitions are discussed. We found that the center-of-mass collision energy range of tricritical endpoint of QCD phase diagram is [9; 9.2] GeV which is consistent both with QCD inspired exactly solvable model and with experimental findings.
134 - Lu-Meng Liu , Jun Xu , 2021
With the isovector coupling constants adjusted to reproduce the physical pion mass and lattice QCD results in baryon-free quark matter, we have carried out rigourous calculations for the pion condensate in the 3-flavor Nambu-Jona-Lasinio model, and studied the 3-dimensional QCD phase diagram. With the increasing isospin chemical potential $mu_I$, we have observed two nonzero solutions of the pion condensate at finite baryon chemical potentials $mu_B$, representing respectively the pion superfluid phase and the Sarma phase, and their appearance and disappearance correspond to a second-order (first-order) phase transition at higher (lower) temperatures $T$ and lower (higher) $mu_B$. Calculations by assuming equal constituent mass of $u$ and $d$ quarks would lead to large errors of the QCD phase diagram within $mu_B in (500, 900)$ MeV, and affect the position of the critical end point.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا