Do you want to publish a course? Click here

Efficiency Increase in Multijunction Monochromatic Photovoltaic Devices Due to Luminescent Coupling

234   0   0.0 ( 0 )
 Added by Daixi Xia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a multijunction detailed balance model that includes the effects of luminescent coupling, light trapping and nonradiative recombination, suitable for treatment of multijunction solar cells and photonic power converters -- photovoltaic devices designed to convert narrow-band light. The model includes both specular and Lambertian reflections using a ray-optic formalism and treats nonradiative processes using an internal radiative efficiency. Using this model, we calculate and optimize the efficiency of multijunction photonic power converters for a range of material qualities and light-trapping schemes. Multijunction devices allow increased voltage with lower current, decreasing series resistance losses. We show that efficiency increases significantly with increased number of junctions, even without series resistance, when the device has an absorbing substrate. Such an increase does not occur when the device has a back reflector. We explain this effect using a simplified model, which illustrates the origin of the decreased radiative losses in multijunction devices on substrates.



rate research

Read More

The spatial collection efficiency portrays the driving forces and loss mechanisms in photovoltaic and photoelectrochemical devices. It is defined as the fraction of photogenerated charge carriers created at a specific point within the device that contribute to the photocurrent. In stratified planar structures, the spatial collection efficiency can be extracted out of photocurrent action spectra measurements empirically, with few a priori assumptions. Although this method was applied to photovoltaic cells made of well-understood materials, it has never been used to study unconventional materials such as metal-oxide semiconductors that are often employed in photoelectrochemical cells. This perspective shows the opportunities that this method has to offer for investigating new materials and devices with unknown properties. The relative simplicity of the method, and its applicability to operando performance characterization, makes it an important tool for analysis and design of new photovoltaic and photoelectrochemical materials and devices.
As the cost of renewable energy falls below fossil fuels, the most important challenge to enable widespread sustainable power generation has become making renewables dispatchable. Low cost energy storage can provide this dispatchability, but there is no clear technology that can meet the need. Pumped hydroelectric and compressed air storage have low costs, but they are geographically constrained. Similarly, lithium-ion batteries are becoming ubiquitous, but even their lower bounding asymptote cost is too high to enable cost-competitive dispatchable renewables. Here, we introduce a concept based on thermal energy grid storage (TEGS) using a multijunction photovoltaic heat engine (MPV) with promising initial experimental results that could meet the low cost required to enable cost competitive dispatchable renewables. The approach exploits an important tradeoff between the accession of an extremely low cost per unit energy stored, by storing heat instead of electricity directly, while paying the penalty of a lower round trip efficiency. To understand why this tradeoff is advantageous, we first introduce a framework for evaluating storage technologies that treats round trip efficiency (RTE) as a variable, in addition to cost per unit energy stored (CPE) and cost per unit power (CPP). It is from this perspective that the TEGS-MPV concept offers a compelling economic proposition.
The last five years have witnessed a remarkable progress in the field of lead halide perovskite materials and devices. Examining the existing body of literature reveals staggering inconsistencies in the reported results among different research groups with a particularly wide spread in the photovoltaic performance and stability of devices. In this work we demonstrate that fractional, quite possibly unintentional, deviations in the precursor solution stoichiometry can cause significant changes in the properties of the perovskite layer as well as in the performance and stability of perovskite photovoltaic devices. We show that while the absorbance and morphology of the layers remains largely unaffected, the surface composition and energetics, crystallinity, emission efficiency, energetic disorder and storage stability are all very sensitive to the precise stoichiometry of the precursor solution. Our results elucidate the origin of the irreproducibility and inconsistencies of reported results among different groups as well as the wide spread in device performance even within individual studies. Finally, we propose a simple experimental method to identify the exact stoichiometry of the perovskite layer that researchers can employ to confirm their experiments are performed consistently without unintentional variations in precursor stoichiometry.
The wide band gap methylammonium lead bromide perovskite is promising for applications in tandem solar cells and light-emitting diodes. Despite its utility, there is only a limited understanding of its reproducibility and stability. Herein, the dependence of the properties, performance, and shelf storage of thin films and devices on minute changes to the precursor solution stoichiometry is examined in detail. Although photovoltaic cells based on these solution changes exhibit similar initial performance, the shelf-storage depends strongly on the precursor solution stoichiometry. While all devices exhibit some degree of healing, the bromide-deficient films show a remarkable improvement, more than doubling in their photoconversion efficiency. Photoluminescence spectroscopy experiments performed under different atmospheres suggest that this increase is due in part to a trap healing mechanism that occurs upon exposure to the environment. Our results highlight the importance of understanding and manipulating defects in lead halide perovskites to produce long-lasting, stable devices.
The Shockley-Queisser (SQ) limit provides a convenient metric for predicting light-to-electricity conversion efficiency of a solar cell based on the band gap of the light-absorbing layer. In reality, few materials approach this radiative limit. We develop a formalism and a computational method to predict the maximum photovoltaic efficiency of imperfect crystals from first principles. Our scheme includes equilibrium populations of native defects, their carrier-capture coefficients, and the associated recombination rates. When applied to kesterite solar cells, we reveal an intrinsic limit of 20% for $mathrm{Cu_2ZnSnSe_4}$, which falls far below the SQ limit of 32%. The effects of atomic substitution and extrinsic doping are studied, leading to pathways for enhanced efficiency of 31%. This approach can be applied to support targeted-materials selection for future solar-energy technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا