Do you want to publish a course? Click here

3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure Prior

186   0   0.0 ( 0 )
 Added by Xiaokang Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The goal of the Semantic Scene Completion (SSC) task is to simultaneously predict a completed 3D voxel representation of volumetric occupancy and semantic labels of objects in the scene from a single-view observation. Since the computational cost generally increases explosively along with the growth of voxel resolution, most current state-of-the-arts have to tailor their framework into a low-resolution representation with the sacrifice of detail prediction. Thus, voxel resolution becomes one of the crucial difficulties that lead to the performance bottleneck. In this paper, we propose to devise a new geometry-based strategy to embed depth information with low-resolution voxel representation, which could still be able to encode sufficient geometric information, e.g., room layout, objects sizes and shapes, to infer the invisible areas of the scene with well structure-preserving details. To this end, we first propose a novel 3D sketch-aware feature embedding to explicitly encode geometric information effectively and efficiently. With the 3D sketch in hand, we further devise a simple yet effective semantic scene completion framework that incorporates a light-weight 3D Sketch Hallucination module to guide the inference of occupancy and the semantic labels via a semi-supervised structure prior learning strategy. We demonstrate that our proposed geometric embedding works better than the depth feature learning from habitual SSC frameworks. Our final model surpasses state-of-the-arts consistently on three public benchmarks, which only requires 3D volumes of 60 x 36 x 60 resolution for both input and output. The code and the supplementary material will be available at https://charlesCXK.github.io.

rate research

Read More

This paper focuses on visual semantic navigation, the task of producing actions for an active agent to navigate to a specified target object category in an unknown environment. To complete this task, the algorithm should simultaneously locate and navigate to an instance of the category. In comparison to the traditional point goal navigation, this task requires the agent to have a stronger contextual prior to indoor environments. We introduce SSCNav, an algorithm that explicitly models scene priors using a confidence-aware semantic scene completion module to complete the scene and guide the agents navigation planning. Given a partial observation of the environment, SSCNav first infers a complete scene representation with semantic labels for the unobserved scene together with a confidence map associated with its own prediction. Then, a policy network infers the action from the scene completion result and confidence map. Our experiments demonstrate that the proposed scene completion module improves the efficiency of the downstream navigation policies. Video, code, and data: https://sscnav.cs.columbia.edu/
Semantic Scene Completion aims at reconstructing a complete 3D scene with precise voxel-wise semantics from a single-view depth or RGBD image. It is a crucial but challenging problem for indoor scene understanding. In this work, we present a novel framework named Scene-Instance-Scene Network (textit{SISNet}), which takes advantages of both instance and scene level semantic information. Our method is capable of inferring fine-grained shape details as well as nearby objects whose semantic categories are easily mixed-up. The key insight is that we decouple the instances from a coarsely completed semantic scene instead of a raw input image to guide the reconstruction of instances and the overall scene. SISNet conducts iterative scene-to-instance (SI) and instance-to-scene (IS) semantic completion. Specifically, the SI is able to encode objects surrounding context for effectively decoupling instances from the scene and each instance could be voxelized into higher resolution to capture finer details. With IS, fine-grained instance information can be integrated back into the 3D scene and thus leads to more accurate semantic scene completion. Utilizing such an iterative mechanism, the scene and instance completion benefits each other to achieve higher completion accuracy. Extensively experiments show that our proposed method consistently outperforms state-of-the-art methods on both real NYU, NYUCAD and synthetic SUNCG-RGBD datasets. The code and the supplementary material will be available at url{https://github.com/yjcaimeow/SISNet}.
The recent success of implicit neural scene representations has presented a viable new method for how we capture and store 3D scenes. Unlike conventional 3D representations, such as point clouds, which explicitly store scene properties in discrete, localized units, these implicit representations encode a scene in the weights of a neural network which can be queried at any coordinate to produce these same scene properties. Thus far, implicit representations have primarily been optimized to estimate only the appearance and/or 3D geometry information in a scene. We take the next step and demonstrate that an existing implicit representation (SRNs) is actually multi-modal; it can be further leveraged to perform per-point semantic segmentation while retaining its ability to represent appearance and geometry. To achieve this multi-modal behavior, we utilize a semi-supervised learning strategy atop the existing pre-trained scene representation. Our method is simple, general, and only requires a few tens of labeled 2D segmentation masks in order to achieve dense 3D semantic segmentation. We explore two novel applications for this semantically aware implicit neural scene representation: 3D novel view and semantic label synthesis given only a single input RGB image or 2D label mask, as well as 3D interpolation of appearance and semantics.
We introduce ScanComplete, a novel data-driven approach for taking an incomplete 3D scan of a scene as input and predicting a complete 3D model along with per-voxel semantic labels. The key contribution of our method is its ability to handle large scenes with varying spatial extent, managing the cubic growth in data size as scene size increases. To this end, we devise a fully-convolutional generative 3D CNN model whose filter kernels are invariant to the overall scene size. The model can be trained on scene subvolumes but deployed on arbitrarily large scenes at test time. In addition, we propose a coarse-to-fine inference strategy in order to produce high-resolution output while also leveraging large input context sizes. In an extensive series of experiments, we carefully evaluate different model design choices, considering both deterministic and probabilistic models for completion and semantic inference. Our results show that we outperform other methods not only in the size of the environments handled and processing efficiency, but also with regard to completion quality and semantic segmentation performance by a significant margin.
Unsupervised learning with generative models has the potential of discovering rich representations of 3D scenes. While geometric deep learning has explored 3D-structure-aware representations of scene geometry, these models typically require explicit 3D supervision. Emerging neural scene representations can be trained only with posed 2D images, but existing methods ignore the three-dimensional structure of scenes. We propose Scene Representation Networks (SRNs), a continuous, 3D-structure-aware scene representation that encodes both geometry and appearance. SRNs represent scenes as continuous functions that map world coordinates to a feature representation of local scene properties. By formulating the image formation as a differentiable ray-marching algorithm, SRNs can be trained end-to-end from only 2D images and their camera poses, without access to depth or shape. This formulation naturally generalizes across scenes, learning powerful geometry and appearance priors in the process. We demonstrate the potential of SRNs by evaluating them for novel view synthesis, few-shot reconstruction, joint shape and appearance interpolation, and unsupervised discovery of a non-rigid face model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا