Do you want to publish a course? Click here

On the UV completion of the $O(N)$ model in $6-epsilon$ dimensions: a stable large-charge sector

68   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study large charge sectors in the $O(N)$ model in $6-epsilon $ dimensions. For $4<d<6$, in perturbation theory, the quartic $O(N)$ theory has a UV stable fixed point at large $N$. It was recently argued that this fixed point can be described in terms of an IR fixed point of a cubic $O(N)$ model. By considering a double scaling limit of large charge and weak couplings, we compute two-point and all extremal higher-point correlation functions for large charge operators and find a precise equivalence between both pictures. Instanton instabilities are found to be exponentially suppressed at large charge. We also consider correlation function of $U(1)$-invariant meson operators in the $O(2N)supset U(1)times SU(N)$ theory, as a first step towards tests of (higher spin) $AdS/CFT$.



rate research

Read More

190 - I. Jack , D.R.T Jones 2021
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(phi^*phi)^2$ theory may be computed semi-classically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$ and this was verified to two loop order in perturbation theory at leading and sub-leading $n$. In subsequent work, this result was generalised to operators of fixed charge $Q$ in $O(N)$ theory and verified up to three loops in perturbation theory at leading and sub-leading order. Here we extend this verification to four loops in $O(N)$ theory, once again at leading and sub-leading order. We also investigate the strong-coupling regime.
300 - P.V. Pobylitsa 2008
Usually the asymptotic behavior for large orders of the perturbation theory is reached rather slowly. However, in the case of the N-component $phi^4$ model in D=4 dimensions one can find a special quantity that exhibits an extremely fast convergence to the asymptotic form. A comparison of the available 5-loop result for this quantity with the asymptotic value shows agreement at the 0.1% level. An analogous superfast convergence to the asymptotic form happens in the case of the O(N)-symmetric anharmonic oscillator where this convergence has inverse factorial type. The large orders of the $epsilon$ expansion for critical exponents manifest a similar effect.
We outline a general strategy developed for the analysis of critical models, which we apply to obtain a heuristic classification of all universality classes with up to three field-theoretical scalar order parameters in $d=6-epsilon$ dimensions. As expected by the paradigm of universality, each class is uniquely characterized by its symmetry group and by a set of its scaling properties, neither of which are built-in by the formalism but instead emerge nontrivially as outputs of our computations. For three fields, we find several solutions mostly with discrete symmetries. These are nontrivial conformal field theory candidates in less than six dimensions, one of which is a new perturbatively unitary critical model.
114 - I. Jack , D.R.T. Jones 2021
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(barphiphi)^2$ theory may be computed semiclassically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$, and this was verified to two loop order in perturbation theory at leading and subleading $n$. This result was subsequently generalised to operators of fixed charge $Q$ in $O(N)$ theory and verified up to four loops in perturbation theory at leading and subleading $Q$. More recently, similar semiclassical calculations have been performed for the classically scale-invariant $U(N)times U(N)$ theory in four dimensions, and verified up to two loops, once again at leading and subleading $Q$. Here we extend this verification to four loops. We also consider the corresponding classically scale-invariant theory in three dimensions, similarly verifying the leading and subleading semiclassical results up to four loops in perturbation theory.
We compute, using the method of large spin perturbation theory, the anomalous dimensions and OPE coefficients of all leading twist operators in the critical $ O(N) $ model, to fourth order in the $ epsilon $-expansion. This is done fully within a bootstrap framework, and generalizes a recent result for the CFT-data of the Wilson-Fisher model. The anomalous dimensions we obtain for the $ O(N) $ singlet operators agree with the literature values, obtained by diagrammatic techniques, while the anomalous dimensions for operators in other representations, as well as all OPE coefficients, are new. From the results for the OPE coefficients, we derive the $ epsilon^4 $ corrections to the central charges $ C_T $ and $ C_J $, which are found to be compatible with the known large $ N $ expansions. Predictions for the central charge in the strongly coupled 3d model, including the 3d Ising model, are made for various values of $ N $, which compare favourably with numerical results and previous predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا