No Arabic abstract
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(barphiphi)^2$ theory may be computed semiclassically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$, and this was verified to two loop order in perturbation theory at leading and subleading $n$. This result was subsequently generalised to operators of fixed charge $Q$ in $O(N)$ theory and verified up to four loops in perturbation theory at leading and subleading $Q$. More recently, similar semiclassical calculations have been performed for the classically scale-invariant $U(N)times U(N)$ theory in four dimensions, and verified up to two loops, once again at leading and subleading $Q$. Here we extend this verification to four loops. We also consider the corresponding classically scale-invariant theory in three dimensions, similarly verifying the leading and subleading semiclassical results up to four loops in perturbation theory.
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(phi^*phi)^2$ theory may be computed semi-classically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$ and this was verified to two loop order in perturbation theory at leading and sub-leading $n$. In subsequent work, this result was generalised to operators of fixed charge $Q$ in $O(N)$ theory and verified up to three loops in perturbation theory at leading and sub-leading order. Here we extend this verification to four loops in $O(N)$ theory, once again at leading and sub-leading order. We also investigate the strong-coupling regime.
This is an edited version of an unpublished 1979 EFI (U. Chicago) preprint: The U(N) lattice gauge theory in 2-dimensions can be considered as the statistical mechanics of a Coulomb gas on a circle in a constant electric field. The large N limit of this system is discussed and compared with exact answers for finite N. Near the fixed points of the renormalization group and especially in the critical region where one can define a continuum theory, computations in the thermodynamic limit $(N rightarrow infty)$ are in remarkable agreement with those for finite and small N. However, in the intermediate coupling region the thermodynamic computation, unlike the one for finite N, shows a continuous phase transition. This transition seems to be a pathology of the infinite N limit and in this simple model has no bearing on the physical continuum limit.
We apply a semi-classical method to compute the conformal field theory (CFT) data for the U(N)xU(N) non-abelian Higgs theory in four minus epsilon dimensions at its complex fixed point. The theory features more than one coupling and walking dynamics. Given our charge configuration, we identify a family of corresponding operators and compute their scaling dimensions which remarkably agree with available results from conventional perturbation theory validating the use of the state-operator correspondence for a complex CFT.
Using the F-theory realization, we identify a subclass of 6d (1,0) SCFTs whose compactification on a Riemann surface leads to N = 1 4d SCFTs where the moduli space of the Riemann surface is part of the moduli space of the theory. In particular we argue that for a special case of these theories (dual to M5 branes probing ADE singularities), we obtain 4d N = 1 theories whose space of marginal deformations is given by the moduli space of flat ADE connections on a Riemann surface.
We compute four-point correlation functions of scalar composite operators in the N=4 supercurrent multiplet at order g^4 using the N=1 superfield formalism. We confirm the interpretation of short-distance logarithmic behaviours in terms of anomalous dimensions of unprotected operators exchanged in the intermediate channels and we determine the two-loop contribution to the anomalous dimension of the N=4 Konishi supermultiplet.