Do you want to publish a course? Click here

On BV homeomorphisms

132   0   0.0 ( 0 )
 Added by Jan Mal\\'y
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We obtain the rectifiability of the graph of a bounded variation homeomorphism $f$ in the plane and relations between gradients of $f$ and its inverse. Further, we show an example of a bounded variation homeomorphism $f$ in the plane which satisfies the $(N)$ and $(N^{-1})$ properties and strict positivity of Jacobian of both itself and its inverse, but neither $f$ nor $f^{-1}$ is Sobolev.



rate research

Read More

We present a classification of strict limits of planar BV homeomorphisms. The authors and S. Hencl showed in a previous work cite{CHKR} that such mappings allow for cavitations and fractures singularities but fulfill a suitable generalization of the INV condition. As pointed out by J. Ball cite{B}, these features are physically expected by limit configurations of elastic deformations. In the present work we develop a suitable generalization of the emph{no-crossing} condition introduced by De Philippis and Pratelli in cite{PP} to describe weak limits of planar Sobolev homeomorphisms that we call emph{BV no-crossing} condition, and we show that a planar mapping satisfies this property if and only if it can be approximated strictly by homeomorphisms of bounded variations.
We provide a new geometric proof of Reimanns theorem characterizing quasiconformal mappings as the ones preserving functions of bounded mean oscillation. While our proof is new already in the Euclidean spaces, it is applicable in Heisenberg groups as well as in more general stratified nilpotent Carnot groups.
We show that given a homeomorphism $f:GrightarrowOmega$ where $G$ is a open subset of $mathbb{R}^2$ and $Omega$ is a open subset of a $2$-Ahlfors regular metric measure space supporting a weak $(1,1)$-Poincare inequality, it holds $fin BV_{operatorname{loc}}(G,Omega)$ if and only $f^{-1}in BV_{operatorname{loc}}(Omega,G)$. Further if $f$ satisfies the Luzin N and N$^{-1}$ conditions then $fin W^{1,1}_{operatorname{loc}}(G,Omega)$ if and only if $f^{-1}in W^{1,1}_{operatorname{loc}}(Omega,G)$.
122 - Dalila Azzam-Laouir 2021
This paper concerns existence of right-continuous with bounded variation solutions of a perturbed second-order differential inclusion governed by time and state-dependent maximal monotone operators.
178 - E. Shchepin , V. Valov 2021
It is established that any homeomorphism between two closed negligible subset of $D^tau$ can be extended to an autohomeomorphism of $D^tau$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا