Do you want to publish a course? Click here

Omni-sourced Webly-supervised Learning for Video Recognition

76   0   0.0 ( 0 )
 Added by Haodong Duan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce OmniSource, a novel framework for leveraging web data to train video recognition models. OmniSource overcomes the barriers between data formats, such as images, short videos, and long untrimmed videos for webly-supervised learning. First, data samples with multiple formats, curated by task-specific data collection and automatically filtered by a teacher model, are transformed into a unified form. Then a joint-training strategy is proposed to deal with the domain gaps between multiple data sources and formats in webly-supervised learning. Several good practices, including data balancing, resampling, and cross-dataset mixup are adopted in joint training. Experiments show that by utilizing data from multiple sources and formats, OmniSource is more data-efficient in training. With only 3.5M images and 800K minutes videos crawled from the internet without human labeling (less than 2% of prior works), our models learned with OmniSource improve Top-1 accuracy of 2D- and 3D-ConvNet baseline models by 3.0% and 3.9%, respectively, on the Kinetics-400 benchmark. With OmniSource, we establish new records with different pretraining strategies for video recognition. Our best models achieve 80.4%, 80.5%, and 83.6 Top-1 accuracies on the Kinetics-400 benchmark respectively for training-from-scratch, ImageNet pre-training and IG-65M pre-training.



rate research

Read More

WebFG 2020 is an international challenge hosted by Nanjing University of Science and Technology, University of Edinburgh, Nanjing University, The University of Adelaide, Waseda University, etc. This challenge mainly pays attention to the webly-supervised fine-grained recognition problem. In the literature, existing deep learning methods highly rely on large-scale and high-quality labeled training data, which poses a limitation to their practicability and scalability in real world applications. In particular, for fine-grained recognition, a visual task that requires professional knowledge for labeling, the cost of acquiring labeled training data is quite high. It causes extreme difficulties to obtain a large amount of high-quality training data. Therefore, utilizing free web data to train fine-grained recognition models has attracted increasing attentions from researchers in the fine-grained community. This challenge expects participants to develop webly-supervised fine-grained recognition methods, which leverages web images in training fine-grained recognition models to ease the extreme dependence of deep learning methods on large-scale manually labeled datasets and to enhance their practicability and scalability. In this technical report, we have pulled together the top WebFG 2020 solutions of total 54 competing teams, and discuss what methods worked best across the set of winning teams, and what surprisingly did not help.
272 - Ping Liu , Yunchao Wei , Zibo Meng 2020
In this paper, we target on advancing the performance in facial expression recognition (FER) by exploiting omni-supervised learning. The current state of the art FER approaches usually aim to recognize facial expressions in a controlled environment by training models with a limited number of samples. To enhance the robustness of the learned models for various scenarios, we propose to perform omni-supervised learning by exploiting the labeled samples together with a large number of unlabeled data. Particularly, we first employ MS-Celeb-1M as the facial-pool where around 5,822K unlabeled facial images are included. Then, a primitive model learned on a small number of labeled samples is adopted to select samples with high confidence from the facial-pool by conducting feature-based similarity comparison. We find the new dataset constructed in such an omni-supervised manner can significantly improve the generalization ability of the learned FER model and boost the performance consequently. However, as more training samples are used, more computation resources and training time are required, which is usually not affordable in many circumstances. To relieve the requirement of computational resources, we further adopt a dataset distillation strategy to distill the target task-related knowledge from the new mined samples and compressed them into a very small set of images. This distilled dataset is capable of boosting the performance of FER with few additional computational cost introduced. We perform extensive experiments on five popular benchmarks and a newly constructed dataset, where consistent gains can be achieved under various settings using the proposed framework. We hope this work will serve as a solid baseline and help ease future research in FER.
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lower-bounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations. We argue that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging real-world data. Our experimental results show that in the cases of human keypoint detection and general object detection, state-of-the-art models trained with data distillation surpass the performance of using labeled data from the COCO dataset alone.
Learning from the web can ease the extreme dependence of deep learning on large-scale manually labeled datasets. Especially for fine-grained recognition, which targets at distinguishing subordinate categories, it will significantly reduce the labeling costs by leveraging free web data. Despite its significant practical and research value, the webly supervised fine-grained recognition problem is not extensively studied in the computer vision community, largely due to the lack of high-quality datasets. To fill this gap, in this paper we construct two new benchmark webly supervised fine-grained datasets, termed WebFG-496 and WebiNat-5089, respectively. In concretely, WebFG-496 consists of three sub-datasets containing a total of 53,339 web training images with 200 species of birds (Web-bird), 100 types of aircrafts (Web-aircraft), and 196 models of cars (Web-car). For WebiNat-5089, it contains 5089 sub-categories and more than 1.1 million web training images, which is the largest webly supervised fine-grained dataset ever. As a minor contribution, we also propose a novel webly supervised method (termed {Peer-learning}) for benchmarking these datasets.~Comprehensive experimental results and analyses on two new benchmark datasets demonstrate that the proposed method achieves superior performance over the competing baseline models and states-of-the-art. Our benchmark datasets and the source codes of Peer-learning have been made available at {url{https://github.com/NUST-Machine-Intelligence-Laboratory/weblyFG-dataset}}.
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to collect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا