Do you want to publish a course? Click here

Deriving AC OPF Solutions via Proximal Policy Optimization for Secure and Economic Grid Operation

81   0   0.0 ( 0 )
 Added by Yuhao Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Optimal power flow (OPF) is a very fundamental but vital optimization problem in the power system, which aims at solving a specific objective function (ex.: generator costs) while maintaining the system in the stable and safe operations. In this paper, we adopted the start-of-the-art artificial intelligence (AI) techniques to train an agent aiming at solving the AC OPF problem, where the nonlinear power balance equations are considered. The modified IEEE-14 bus system were utilized to validate the proposed approach. The testing results showed a great potential of adopting AI techniques in the power system operations.



rate research

Read More

Fast and accurate optimization and simulation is widely becoming a necessity for large scale transmission resiliency and planning studies such as N-1 SCOPF, batch contingency solvers, and stochastic power flow. Current commercial tools, however, prioritize speed of convergence over accuracy by relying on initial conditions that are taken from the steady state solution of similar network configurations that are not guaranteed to lie within a convex region of a valid solution. In this paper we introduce a globally convergent algorithm to facilitate fast and accurate AC steady state simulation and optimization based on prior knowledge from similar networks. The approach uses a homotopy method that gradually and efficiently translates a previously known network configuration to the current network configuration. The proposed formulation is highly scalable, and its efficacy is demonstrated for resiliency study and optimization of large networks up to 70k buses.
We pose the aggregators problem as a bilevel model, where the upper level minimizes the total operation costs of the fleet of EVs, while each lower level minimizes the energy available to each vehicle for transportation given a certain charging plan. Thanks to the totally unimodular character of the constraint matrix in the lower-level problems, the model can be mathematically recast as a computationally efficient mixed-integer program that delivers charging schedules that are robust against the uncertain availability of the EVs. Finally, we use synthetic data from the National Household Travel Survey 2017 to analyze the behavior of the EV aggregator from both economic and technical viewpoints and compare it with the results from a deterministic approach.
The control and managing of power demand and supply become very crucial because of penetration of renewables in the electricity networks and energy demand increase in residential and commercial sectors. In this paper, a new approach is presented to bridge the gap between Demand-Side Management (DSM) and microgrid portfolio, sizing and placement optimization. Although DSM helps energy consumers to take advantage of recent developments in utilization of Distributed Energy Resources (DERs) especially microgrids, a huge need of connecting DSM results to microgrid optimization is being felt. Consequently, a novel model that integrates the DSM techniques and microgrid modules in a two-layer configuration is proposed. In the first layer, DSM is employed to minimize the electricity demand (e.g. heating and cooling loads) based on zone temperature set-point. Using the optimal load profile obtained from the first layer, all investment and operation costs of a microgrid are then optimized in the second layer. The presented model is based on the existing optimization platform developed by RU-LESS (Rutgers University, Laboratory for Energy Smart Systems) team. As a demonstration, the developed model has been used to study the impact of smart HVAC control on microgrid compared to traditional HVAC control. The results show a noticeable reduction in total annual energy consumption and annual cost of microgrid.
With the large-scale integration of renewable power generation, frequency regulation resources (FRRs) are required to have larger capacities and faster ramp rates, which increases the cost of the frequency regulation ancillary service. Therefore, it is necessary to consider the frequency regulation cost and constraint along with real-time economic dispatch (RTED). In this paper, a data-driven distributionally robust optimization (DRO) method for RTED considering automatic generation control (AGC) is proposed. First, a Copula-based AGC signal model is developed to reflect the correlations among the AGC signal, load power and renewable generation variations. Secondly, samples of the AGC signal are taken from its conditional probability distribution under the forecasted load power and renewable generation variations. Thirdly, a distributionally robust RTED model considering the frequency regulation cost and constraint is built and transformed into a linear programming problem by leveraging the Wasserstein metric-based DRO technique. Simulation results show that the proposed method can reduce the total cost of power generation and frequency regulation.
In chance-constrained OPF models, joint chance constraints (JCCs) offer a stronger guarantee on security compared to single chance constraints (SCCs). Using Booles inequality or its improv
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا