No Arabic abstract
We present analytic results for a special dimer model on the {em non-bipartite} and {em non-planar} checkerboard lattice that does not allow for parallel dimers surrounding diagonal links. We {em exactly} calculate the number of closed packed dimer coverings on finite checkerboard lattices under periodic boundary conditions, and determine all dimer-dimer correlations. The latter are found to vanish beyond a certain distance. We find that this solvable model, despite being non-planar, is in close kinship with well-known paradigm-setting planar counterparts that allow exact mappings to $mathbb{Z}_2$ lattice gauge theory.
We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the devils staircase scenario [E. Fradkin et al., Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.
We consider the $(2+1)$-d $SU(2)$ quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the $mathbb{Z}(2)$ center of the $SU(2)$ gauge group) are confined to each other by fractionalized strings with a delocalized $mathbb{Z}(2)$ flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
We solve the monomer-dimer problem on a non-bipartite lattice, the simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the non-bipartite nature of the lattice, the well-known method of a Temperley bijection of solving single-monomer problems cannot be used. In this paper we derive the solution by mapping the problem onto one on close-packed dimers on a related lattice. Finite-size analysis of the solution is carried out. We find from asymptotic expansions of the free energy that the central charge in the logarithmic conformal field theory assumes the value $c=-2$.
We study the effect of quantum fluctuations by means of a transverse magnetic field ($Gamma$) on the antiferromagnetic $J_1-J_2$ Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phase diagram of the model has been obtained by employing a plaquette operator approach (POA). The plaquette operator formalism bosonizes the model, in which a single boson is associated to each eigenstate of a plaquette and the inter-plaquette interactions define an effective Hamiltonian. The excitations of a plaquette would represent an-harmonic fluctuations of the model, which lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a plaquette ordered solid (RPS) state, which breaks lattice translational symmetry, in addition to a unique collinear phase for $J_2>J_1$. The bosonic excitation gap vanishes at the critical points to the N{e}el ($J_2 < J_1$) and collinear ($J_2 > J_1$) ordered phases, which defines the critical phase boundaries. At the homogeneous coupling ($J_2=J_1$) and its close neighborhood, the (canted) RPS state, established from an-harmonic fluctuations, lasts for low fields, $Gamma/J_1lesssim 0.3$, which is followed by a transition to the quantum paramagnet (polarized) phase at high fields. The transition from RPS state to the N{e}el phase is either a deconfined quantum phase transition or a first order one, however a continuous transition occurs between RPS and collinear phases.
We construct the Hamiltonian description of the Chern-Simons theory with Z_n gauge group on a triangular lattice. We show that the Z_2 model can be mapped onto free Majorana fermions and compute the excitation spectrum. In the bulk the spectrum turns out to be gapless but acquires a gap if a magnetic term is added to the Hamiltonian. On a lattice edge one gets additional non-gauge invariant (matter) gapless degrees of freedom whose number grows linearly with the edge length. Therefore, a small hole in the lattice plays the role of a charged particle characterized by a non-trivial projective representation of the gauge group, while a long edge provides a decoherence mechanism for the fluxes. We discuss briefly the implications for the implementations of protected qubits.