No Arabic abstract
We construct the Hamiltonian description of the Chern-Simons theory with Z_n gauge group on a triangular lattice. We show that the Z_2 model can be mapped onto free Majorana fermions and compute the excitation spectrum. In the bulk the spectrum turns out to be gapless but acquires a gap if a magnetic term is added to the Hamiltonian. On a lattice edge one gets additional non-gauge invariant (matter) gapless degrees of freedom whose number grows linearly with the edge length. Therefore, a small hole in the lattice plays the role of a charged particle characterized by a non-trivial projective representation of the gauge group, while a long edge provides a decoherence mechanism for the fluxes. We discuss briefly the implications for the implementations of protected qubits.
We solve the monomer-dimer problem on a non-bipartite lattice, the simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the non-bipartite nature of the lattice, the well-known method of a Temperley bijection of solving single-monomer problems cannot be used. In this paper we derive the solution by mapping the problem onto one on close-packed dimers on a related lattice. Finite-size analysis of the solution is carried out. We find from asymptotic expansions of the free energy that the central charge in the logarithmic conformal field theory assumes the value $c=-2$.
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to a special case of the Rubinstein-Duke model in one dimension.
We consider the Ising model on the Bethe lattice with aperiodic modulation of the couplings, which has been studied numerically in Phys. Rev. E 77, 041113 (2008). Here we present a relevance-irrelevance criterion and solve the critical behavior exactly for marginal aperiodic sequences. We present analytical formulae for the continuously varying critical exponents and discuss a relationship with the (surface) critical behavior of the aperiodic quantum Ising chain.
We study the thermodynamics of Ising spins on the triangular kagome lattice (TKL) using exact analytic methods as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and susceptibility. We describe the rich phase diagram of the model as a function of coupling constants, temperature, and applied magnetic field. For frustrated interactions in the absence of applied field, the ground state is a spin liquid phase with integer residual entropy per spin $s_0/k_B={1/9} ln 72approx 0.4752...$. In weak applied field, the system maps to the dimer model on a honeycomb lattice, with irrational residual entropy 0.0359 per spin and quasi-long-range order with power-law spin-spin correlations that should be detectable by neutron scattering. The power-law correlations become exponential at finite temperatures, but the correlation length may still be long.
Through a series of exact mappings we reinterpret the Bernoulli model of sequence alignment in terms of the discrete-time totally asymmetric exclusion process with backward sequential update and step function initial condition. Using earlier results from the Bethe ansatz we obtain analytically the exact distribution of the length of the longest common subsequence of two sequences of finite lengths $X,Y$. Asymptotic analysis adapted from random matrix theory allows us to derive the thermodynamic limit directly from the finite-size result.