Do you want to publish a course? Click here

Circumventing Outliers of AutoAugment with Knowledge Distillation

350   0   0.0 ( 0 )
 Added by Lingxi Xie
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

AutoAugment has been a powerful algorithm that improves the accuracy of many vision tasks, yet it is sensitive to the operator space as well as hyper-parameters, and an improper setting may degenerate network optimization. This paper delves deep into the working mechanism, and reveals that AutoAugment may remove part of discriminative information from the training image and so insisting on the ground-truth label is no longer the best option. To relieve the inaccuracy of supervision, we make use of knowledge distillation that refers to the output of a teacher model to guide network training. Experiments are performed in standard image classification benchmarks, and demonstrate the effectiveness of our approach in suppressing noise of data augmentation and stabilizing training. Upon the cooperation of knowledge distillation and AutoAugment, we claim the new state-of-the-art on ImageNet classification with a top-1 accuracy of 85.8%.



rate research

Read More

Knowledge distillation is a widely applicable technique for training a student neural network under the guidance of a trained teacher network. For example, in neural network compression, a high-capacity teacher is distilled to train a compact student; in privileged learning, a teacher trained with privileged data is distilled to train a student without access to that data. The distillation loss determines how a teachers knowledge is captured and transferred to the student. In this paper, we propose a new form of knowledge distillation loss that is inspired by the observation that semantically similar inputs tend to elicit similar activation patterns in a trained network. Similarity-preserving knowledge distillation guides the training of a student network such that input pairs that produce similar (dissimilar) activations in the teacher network produce similar (dissimilar) activations in the student network. In contrast to previous distillation methods, the student is not required to mimic the representation space of the teacher, but rather to preserve the pairwise similarities in its own representation space. Experiments on three public datasets demonstrate the potential of our approach.
Despite the recent works on knowledge distillation (KD) have achieved a further improvement through elaborately modeling the decision boundary as the posterior knowledge, their performance is still dependent on the hypothesis that the target network has a powerful capacity (representation ability). In this paper, we propose a knowledge representing (KR) framework mainly focusing on modeling the parameters distribution as prior knowledge. Firstly, we suggest a knowledge aggregation scheme in order to answer how to represent the prior knowledge from teacher network. Through aggregating the parameters distribution from teacher network into more abstract level, the scheme is able to alleviate the phenomenon of residual accumulation in the deeper layers. Secondly, as the critical issue of what the most important prior knowledge is for better distilling, we design a sparse recoding penalty for constraining the student network to learn with the penalized gradients. With the proposed penalty, the student network can effectively avoid the over-regularization during knowledge distilling and converge faster. The quantitative experiments exhibit that the proposed framework achieves the state-ofthe-arts performance, even though the target network does not have the expected capacity. Moreover, the framework is flexible enough for combining with other KD methods based on the posterior knowledge.
121 - Kui Fu , Peipei Shi , Yafei Song 2019
Large convolutional neural network models have recently demonstrated impressive performance on video attention prediction. Conventionally, these models are with intensive computation and large memory. To address these issues, we design an extremely light-weight network with ultrafast speed, named UVA-Net. The network is constructed based on depth-wise convolutions and takes low-resolution images as input. However, this straight-forward acceleration method will decrease performance dramatically. To this end, we propose a coupled knowledge distillation strategy to augment and train the network effectively. With this strategy, the model can further automatically discover and emphasize implicit useful cues contained in the data. Both spatial and temporal knowledge learned by the high-resolution complex teacher networks also can be distilled and transferred into the proposed low-resolution light-weight spatiotemporal network. Experimental results show that the performance of our model is comparable to 11 state-of-the-art models in video attention prediction, while it costs only 0.68 MB memory footprint, runs about 10,106 FPS on GPU and 404 FPS on CPU, which is 206 times faster than previous models.
It remains very challenging to build a pedestrian detection system for real world applications, which demand for both accuracy and speed. This work presents a novel hierarchical knowledge distillation framework to learn a lightweight pedestrian detector, which significantly reduces the computational cost and still holds the high accuracy at the same time. Following the `teacher--student diagram that a stronger, deeper neural network can teach a lightweight network to learn better representations, we explore multiple knowledge distillation architectures and reframe this approach as a unified, hierarchical distillation framework. In particular, the proposed distillation is performed at multiple hierarchies, multiple stages in a modern detector, which empowers the student detector to learn both low-level details and high-level abstractions simultaneously. Experiment result shows that a student model trained by our framework, with 6 times compression in number of parameters, still achieves competitive performance as the teacher model on the widely used pedestrian detection benchmark.
Knowledge distillation (KD) is widely used for training a compact model with the supervision of another large model, which could effectively improve the performance. Previous methods mainly focus on two aspects: 1) training the student to mimic representation space of the teacher; 2) training the model progressively or adding extra module like discriminator. Knowledge from teacher is useful, but it is still not exactly right compared with ground truth. Besides, overly uncertain supervision also influences the result. We introduce two novel approaches, Knowledge Adjustment (KA) and Dynamic Temperature Distillation (DTD), to penalize bad supervision and improve student model. Experiments on CIFAR-100, CINIC-10 and Tiny ImageNet show that our methods get encouraging performance compared with state-of-the-art methods. When combined with other KD-based methods, the performance will be further improved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا