Do you want to publish a course? Click here

Momentum dependent $d_{xz/yz}$ band splitting in LaFeAsO

74   0   0.0 ( 0 )
 Added by Soonsang Huh
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the {Gamma} and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the {Gamma} and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the {Gamma} point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors.



rate research

Read More

We have performed angle resolved photoemission spectroscopy (ARPES) experiments on the surface states of SrTiO$_3$(001) using linearly and circularly polarized light to investigate the subband structures of out-of-plane $d_{xz/yz}$ orbitals and chiral orbital angular momentum (OAM). The data taken in the first Brillouin zone reveal new subbands for $d_{xz/yz}$ orbitals with Fermi wave vectors of 0.25 and 0.45 $mathrm{AA}^{-1}$ in addition to the previously reported ones. As a result, there are at least two subbands for all the Ti 3d t$_{2g}$ orbitals. Our circular dichroism ARPES data is suggestive of a chiral OAM structure in the surface states and may provide clues to the origin of the linear Rashba-like surface band splitting.
We study superconducting FeSe (Tc = 9 K) exhibiting the tetragonal-orthorhombic structural transition (Ts = 90 K) without any antiferromagnetic ordering, by utilizing angle-resolved photoemission spectroscopy. In the detwinned orthorhombic state, the energy position of the dyz orbital band at the Brillouin zone corner is 50 meV higher than that of dxz, indicating the orbital order similar to NaFeAs and BaFe2As2 families. Evidence of orbital order also appears in the hole bands at the Brillouin zone center. Precisely measured temperature dependence using strain-free samples shows that the onset of the orbital ordering (To) occurs very close to Ts, thus suggesting that the electronic nematicity above Ts is considerably weaker in FeSe compared to BaFe2As2 family.
Among numerous hypotheses, recently proposed to explain superconductivity in iron-based superconductors [1-9], many consider Fermi surface (FS) nesting [2, 4, 8, 10] and dimensionality [4, 9] as important contributors. Precise determination of the electronic spectrum and its modification by superconductivity, crucial for further theoretical advance, were hindered by a rich structure of the FS [11-17]. Here, using the angle-resolved photoemission spectroscopy (ARPES) with resolution of all three components of electron momentum and electronic states symmetry, we disentangle the electronic structure of hole-doped BaFe2As2, and show that nesting and dimensionality of FS sheets have no immediate relation to the superconducting pairing. Alternatively a clear correlation between the orbital character of the electronic states and their propensity to superconductivity is observed: the magnitude of the superconducting gap maximizes at 10.5 meV exclusively for iron 3dxz;yz orbitals, while for others drops to 3.5 meV. Presented results reveal similarities of electronic response to superconducting and magneto-structural transitions [18, 19], implying that relation between these two phases is more intimate than just competition for FS, and demonstrate importance of orbital physics in iron superconductors.
Low dimensionality, broken symmetry and easily-modulated carrier concentrations provoke novel electronic phase emergence at oxide interfaces. However, the spatial extent of such reconstructions - i.e. the interfacial depth - remains unclear. Examining LaAlO$_3$/SrTiO$_3$ heterostructures at previously unexplored carrier densities $n_{2D}geq6.9times10^{14}$ cm$^{-2}$, we observe a Shubnikov-de Haas effect for small in-plane fields, characteristic of an anisotropic 3D Fermi surface with preferential $d_{xz,yz}$ orbital occupancy extending over at least 100~nm perpendicular to the interface. Quantum oscillations from the 3D Fermi surface of bulk doped SrTiO$_3$ emerge simultaneously at higher $n_{2D}$. We distinguish three areas in doped perovskite heterostructures: narrow ($<20$ nm) 2D interfaces housing superconductivity and/or other emergent phases, electronically isotropic regions far ($>120$ nm) from the interface and new intermediate zones where interfacial proximity renormalises the electronic structure relative to the bulk.
282 - Gui-Bin Liu , Bang-Gui Liu 2009
We use a Greens function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature TN and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for TN and determine our temperature-dependent average spin from zero temperature to TN in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature TN = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero TN, and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Greens function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا