Do you want to publish a course? Click here

Strong pairing at iron $3d_{xz,yz}$ orbitals in hole-doped BaFe$_2$As$_2$

161   0   0.0 ( 0 )
 Added by Daniil Evtushinsky
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Among numerous hypotheses, recently proposed to explain superconductivity in iron-based superconductors [1-9], many consider Fermi surface (FS) nesting [2, 4, 8, 10] and dimensionality [4, 9] as important contributors. Precise determination of the electronic spectrum and its modification by superconductivity, crucial for further theoretical advance, were hindered by a rich structure of the FS [11-17]. Here, using the angle-resolved photoemission spectroscopy (ARPES) with resolution of all three components of electron momentum and electronic states symmetry, we disentangle the electronic structure of hole-doped BaFe2As2, and show that nesting and dimensionality of FS sheets have no immediate relation to the superconducting pairing. Alternatively a clear correlation between the orbital character of the electronic states and their propensity to superconductivity is observed: the magnitude of the superconducting gap maximizes at 10.5 meV exclusively for iron 3dxz;yz orbitals, while for others drops to 3.5 meV. Presented results reveal similarities of electronic response to superconducting and magneto-structural transitions [18, 19], implying that relation between these two phases is more intimate than just competition for FS, and demonstrate importance of orbital physics in iron superconductors.



rate research

Read More

162 - Gang Xu , Haijun Zhang , Xi Dai 2008
We show, from first-principles calculations, that the hole-doped side of FeAs-based compounds is different from its electron-doped counterparts. The electron side is characterized as Fermi surface nesting, and SDW-to-NM quantum critical point (QCP) is realized by doping. For the hole-doped side, on the other hand, orbital-selective partial orbital ordering develops together with checkboard antiferromagnetic (AF) ordering without lattice distortion. A unique SDW-to-AF QCP is achieved, and $J_2$=$J_1/2$ criteria (in the approximate $J_1&J_2$ model) is satisfied. The observed superconductivity is located in the vicinity of QCP for both sides.
Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the nature of the quasiparticles close to quantum criticality is fundamental to understand the phase diagram of quantum materials. Here, using resonant inelastic x-ray scattering (RIXS) and Fe-K$_beta$ emission spectroscopy (XES), we visualize the coexistence and evolution of local magnetic moments and collective spin excitations across the superconducting dome in isovalently-doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$ (0.00$leq$x$leq0.$52). Collective magnetic excitations resolved by RIXS are gradually hardened, whereas XES reveals a strong suppression of the local magnetic moment upon doping. This relationship is captured by an intermediate coupling theory, explicitly accounting for the partially localized and itinerant nature of the electrons in Fe pnictides. Finally, our work identifies a local-itinerant spin fluctuations channel through which the local moments transfer spin excitations to the particle-hole (paramagnons) continuum across the superconducting dome.
In order to investigate whether magnetism and superconductivity coexist in Co-doped SrFe$_2$As$_2$, we have prepared single crystals of SrFe$_{2-x}$Co$_x$As$_2$, $x$ = 0 and 0.4, and characterized them via X-ray diffraction, electrical resistivity in zero and applied field up to 9 T as well as at ambient and applied pressure up to 1.6 GPa, and magnetic susceptibility. At $x$ = 0.4, there is both magnetic and resistive evidence for a spin density wave transition at 120 K, while $T_c$ = 19.5 K - indicating coexistent magnetism and superconductivity. A discussion of how these results compare with reported results, both in SrFe$_{2-x}$Co$_x$As$_2$ and in other doped 122 compounds, is given.
184 - Jianwei Huang , Lin Zhao , Cong Li 2019
In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors like niobium or lead, the normal state is a Fermi liquid with a well-defined Fermi surface and well-defined quasipartcles along the Fermi surface. Superconductivity is realized in this case by the Fermi surface instability in the superconducting state and the formation and condensation of the electron pairs (Cooper pairing). The high temperature cuprate superconductors, on the other hand, represent another extreme case that superconductivity can be realized in the underdoped region where there is neither well-defined Fermi surface due to the pseudogap formation nor quasiparticles near the antinodal regions in the normal state. Here we report a novel scenario that superconductivity is realized in a system with well-defined Fermi surface but without quasiparticles along the Fermi surface in the normal state. High resolution laser-based angle-resolved photoemission measurements have been performed on an optimally-doped iron-based superconductor (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$. We find that, while sharp superconducting coherence peaks emerge in the superconducting state on the hole-like Fermi surface sheets, no quasiparticle peak is present in the normal state. Its electronic behaviours deviate strongly from a Fermi liquid system. The superconducting gap of such a system exhibits an unusual temperature dependence that it is nearly a constant in the superconducting state and abruptly closes at T$_c$. These observations have provided a new platform to study unconventional superconductivity in a non-Fermi liquid system.
Inelastic neutron scattering measurements on Ba(Fe$_{0.963}$Ni$_{0.037}$)$_2$As$_2$ manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at Q$_{AFM}$ along the orthorhombic a axis, the resonance disperses upwards away from Q$_{AFM}$ along the b axis. In contrast to the downward dispersing resonance and hour-glass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe$_2$As$_2$ compounds possesses a magnon-like upwards dispersion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا