No Arabic abstract
Quantum electrodynamics predicts the vacuum to behave as a non-linear medium, including effects such as birefringence. However, for experimentally available field strengths, this vacuum polarizability is extremely small and thus very hard to measure. In analogy to the Heisenberg limit in quantum metrology, we study the minimum requirements for such a detection in a given strong field (the pump field). Using a laser pulse as the probe field, we find that its energy must exceed a certain threshold depending on the interaction time. However, a detection at that threshold, i.e., the Heisenberg limit, requires highly non-linear measurement schemes - while for ordinary linear-optics schemes, the required energy (Poisson or shot noise limit) is much larger. Finally, we discuss several currently considered experimental scenarios from this point of view.
We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone. We devise an experimental scheme allowing the XFEL beam to collide with itself under a finite angle, and thus act as both pump and probe field for the effect. The signature of vacuum birefringence is encoded in polarization-flipped signal photons to be detected with high-purity x-ray polarimetry. Our findings for idealized scenarios underline that the discovery potential of solely XFEL-based setups can be comparable to those involving optical high-intensity lasers. For currently achievable scenarios, we identify several key details of the x-ray optical ingredients that exert a strong influence on the magnitude of the desired signatures.
Some of the most prominent theoretical predictions of modern times, e.g., the Unruh effect, Hawking radiation, and gravity-assisted particle creation, are supported by the fact that various quantum constructs like particle content and vacuum fluctuations of a quantum field are observer-dependent. Despite being fundamental in nature, these predictions have not yet been experimentally verified because one needs extremely strong gravity (or acceleration) to bring them within the existing experimental resolution. In this Letter, we demonstrate that a post-Newtonian rotating atom inside a far-detuned cavity experiences strongly modified quantum fluctuations in the inertial vacuum. As a result, the emission rate of an excited atom gets enhanced significantly along with a shift in the emission spectrum due to the change in the quantum correlation under rotation. We propose an optomechanical setup that is capable of realizing such acceleration-induced particle creation with current technology. This provides a novel and potentially feasible experimental proposal for the direct detection of noninertial quantum field theoretic effects.
Vacuum magnetic birefringence is one of the most interesting non-linear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length $L$. In both cases we find also a rotation of the elliptical axis.
We study a model where photons interact with hidden photons and millicharged particles through a kinetic mixing term. Particularly, we focus in vacuum birefringence effects and we find a bound for the millicharged parameter assuming that hidden photons are a piece of the local dark matter density
We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic and polarization properties differ from the photons constituting the macroscopic laser fields. We implement an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and can readily be adapted to the collision of more laser beams or further involved field configurations. We solve the case of two colliding pulses in full 3+1 dimensional spacetime, and identify experimental geometries and parameter regimes with improved signal-to-noise ratios.