Do you want to publish a course? Click here

Spin-orbit-coupled metal candidate PbRe2O6

320   0   0.0 ( 0 )
 Added by Zenji Hiroi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the lead rhenium oxide PbRe2O6 as a candidate spin-orbit-coupled metal (SOCM), which has attracted much attention as a testing ground for studying unconventional Fermi liquid instability associated with a large spin-orbit interaction. The compound comprises a stack of modulated honeycomb lattices made of Re5+ (5d2) ions in a centrosymmetric R-3m structure at room temperature. Resistivity, magnetic susceptibility, and heat capacity measurements using single crystals reveal two successive first-order phase transitions at Ts1 = 265 K and Ts2 = 123 K. At Ts1, the magnetic susceptibility is enormously reduced and a structural transition to a monoclinic structure takes place, while relatively small changes are observed at Ts2. Surprisingly, PbRe2O6 bears a close resemblance to another SOCM candidate Cd2Re2O7 despite crucial differences in the crystal structure and probably in the electronic structure, suggesting that PbRe2O6 is an SOCM.

rate research

Read More

134 - P. Schutz , D. Di Sante , L. Dudy 2017
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit coupled SrIrO$_3$ ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced re-adjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr$_2$IrO$_4$ opens new avenues to unconventional superconductivity by clean electron doping through electric field gating.
The 5d-transition metal pyrochlore oxide Cd2Re2O7, which was recently suggested to be a prototype of the spin-orbit-coupled metal [Phys. Rev. Lett. 115, 026401 (2015)], exhibits an inversion-symmetry breaking (ISB) transition at 200 K and a subsequent superconductivity below 1 K at ambient pressure. We study the crystal structure at high pressures up to 5 GPa by means of synchrotron X-ray powder diffraction. A rich structural phase diagram is obtained, which contains at least seven phases and is almost consistent with the electronic phase diagram determined by previous resistivity measurements. Interestingly, the ISB transition vanishes at ~4 GPa, where the enhancement of the upper critical field was observed in resistivity. Moreover, it is shown that the point groups at 8 K, probably kept in the superconducting phases, sequentially transform into piezoelectric, ferroelectric, and centrosymmetric structures on the application of pressure.
258 - Jie Ma , Jianshu Li , Yong Hao Gao 2020
Spin-orbit coupling is an important ingredient in many spin liquid candidate materials, especially among the rare-earth magnets and Kitaev materials. We explore the rare-earth chalcogenides NaYbS$_2$ where the Yb$^{3+}$ ions form a perfect triangular lattice. Unlike its isostructural counterpart YbMgGaO$_4$ and the kagom{e} lattice herbertsmithite, this material does not have any site disorders both in magnetic and non-magnetic sites. We carried out the thermodynamic and inelastic neutron scattering measurements. The magnetic dynamics could be observed with a broad gapless excitation band up to 1.0 meV at 50 mK and 0 T, no static long-range magnetic ordering is detected down to 50 mK. We discuss the possibility of Dirac spin liquid for NaYbS$_2$. We identify the experimental signatures of field-induced transitions from the disordered spin liquid to an ordered antiferromagnet with an excitation gap at finite magnetic fields and discuss this result with our Monte Carlo calculation of the proposed spin model. Our findings could inspire further interests in the spin-orbit-coupled spin liquids and the magnetic ordering transition from them.
116 - C. H. Wong , R.A. Duine 2012
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin-orbit coupling realized in the experiment of Lin textit{et al}. [Nature (London) textbf{471}, 83 (2011)]. For this spin-orbit coupling, we compute the quasiparticle dispersions and spectral weights, the interaction-induced momentum space Berry curvature, and the momentum space distribution of spin density, and propose experimental signatures. Furthermore, we find that in our approximation for the single-particle propagator, the ground state can in principle support an integer Hall conductivity if the sum of the Chern numbers of the hole bands is nonzero.
We used single-crystal x-ray and neutron diffraction to investigate the crystal and magnetic structures of trigonal lattice iridate Ca2Sr2IrO6. The crystal structure is determined to be $Rbar3$ with two distinct Ir sites. The system exhibits long-range antiferromagnetic order below $T_N = 13.1$ K. The magnetic wave vector is identified as $(0,0.5,1)$ with ferromagnetic coupling along the $a$ axis and antiferromagnetic correlation along the $b$ axis. Spins align dominantly within the basal plane along the [1,2,0] direction and tilt 34$^circ$ towards the $c$ axis. The ordered moment is 0.66(3) $mu_B$/Ir, larger than other iridates where iridium ions form corner- or edge-sharing $rm IrO_6$ octahedral networks. The tilting angle is reduced to $approx19^circ$ when a magnetic field of 4.9 Tesla is applied along the $c$ axis. Density functional theory calculations confirm that the experimentally determined magnetic configuration is the most probable ground state with an insulating gap $sim0.5$~eV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا