Do you want to publish a course? Click here

Ostwald growth rate in controlled Covid-19 epidemic spreading as in arrested growth in quantum complex matter

72   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here, we focus on the data analysis of the growth of epidemic spread of Covid-19 in countries where different policies of containment were activated. It is known that the growth of pandemic spread at its threshold is exponential, but it is not known how to quantify the success of different containment policies. We identify that a successful approach gives an arrested phase regime following the Ostwald growth, where, over the course of time, one phase transforms into another metastable phase with a similar free energy as observed in oxygen interstitial diffusion in quantum complex matter and in crystallization of proteins. We introduce the s factor which provides a quantitative measure of the efficiency and speed of the adopted containment policy, which is very helpful not only to monitor the Covid-19 pandemic spread but also for other countries to choose the best containment policy. The results show that a policy based on joint confinement, targeted tests, and tracking positive cases is the most rapid pandemic containment policy; in fact, we found values of 9, 5, and 31 for the success s factor for China, South Korea, and Italy, respectively, where the lowest s factor indicates the best containment policy



rate research

Read More

We consider the control of the COVID-19 pandemic through a standard SIR compartmental model. This control is induced by the aggregation of individuals decisions to limit their social interactions: when the epidemic is ongoing, an individual can diminish his/her contact rate in order to avoid getting infected, but this effort comes at a social cost. If each individual lowers his/her contact rate, the epidemic vanishes faster, but the effort cost may be high. A Mean Field Nash equilibrium at the population level is formed, resulting in a lower effective transmission rate of the virus. We prove theoretically that equilibrium exists and compute it numerically. However, this equilibrium selects a sub-optimal solution in comparison to the societal optimum (a centralized decision respected fully by all individuals), meaning that the cost of anarchy is strictly positive. We provide numerical examples and a sensitivity analysis, as well as an extension to a SEIR compartmental model to account for the relatively long latent phase of the COVID-19 disease. In all the scenarii considered, the divergence between the individual and societal strategies happens both before the peak of the epidemic, due to individuals fears, and after, when a significant propagation is still underway.
To evaluate the effectiveness of the containment on the epidemic spreading of the new Coronavirus disease 2019, we carry on an analysis of the time evolution of the infection in a selected number of different Countries, by considering well-known macroscopic growth laws, the Gompertz law, and the logistic law. We also propose here a generalization of Gompertz law. Our data analysis permits an evaluation of the maximum number of infected individuals. The daily data must be compared with the obtained fits, to verify if the spreading is under control. From our analysis it appears that the spreading reached saturation in China, due to the strong containment policy of the national government. In Singapore a large growth rate, recently observed, suggests the start of a new strong spreading. For South Korea and Italy, instead, the next data on new infections will be crucial to understand if the saturation will be reached for lower or higher numbers of infected individuals.
Time-varying network topologies can deeply influence dynamical processes mediated by them. Memory effects in the pattern of interactions among individuals are also known to affect how diffusive and spreading phenomena take place. In this paper we analyze the combined effect of these two ingredients on epidemic dynamics on networks. We study the susceptible-infected-susceptible (SIS) and the susceptible-infected-removed (SIR) models on the recently introduced activity-driven networks with memory. By means of an activity-based mean-field approach we derive, in the long time limit, analytical predictions for the epidemic threshold as a function of the parameters describing the distribution of activities and the strength of the memory effects. Our results show that memory reduces the threshold, which is the same for SIS and SIR dynamics, therefore favouring epidemic spreading. The theoretical approach perfectly agrees with numerical simulations in the long time asymptotic regime. Strong aging effects are present in the preasymptotic regime and the epidemic threshold is deeply affected by the starting time of the epidemics. We discuss in detail the origin of the model-dependent preasymptotic corrections, whose understanding could potentially allow for epidemic control on correlated temporal networks.
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
A model for epidemic spreading on rewiring networks is introduced and analyzed for the case of scale free steady state networks. It is found that contrary to what one would have naively expected, the rewiring process typically tends to suppress epidemic spreading. In particular it is found that as in static networks, rewiring networks with degree distribution exponent $gamma >3$ exhibit a threshold in the infection rate below which epidemics die out in the steady state. However the threshold is higher in the rewiring case. For $2<gamma leq 3$ no such threshold exists, but for small infection rate the steady state density of infected nodes (prevalence) is smaller for rewiring networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا