Do you want to publish a course? Click here

Cross-domain Self-supervised Learning for Domain Adaptation with Few Source Labels

120   0   0.0 ( 0 )
 Added by Donghyun Kim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing unsupervised domain adaptation methods aim to transfer knowledge from a label-rich source domain to an unlabeled target domain. However, obtaining labels for some source domains may be very expensive, making complete labeling as used in prior work impractical. In this work, we investigate a new domain adaptation scenario with sparsely labeled source data, where only a few examples in the source domain have been labeled, while the target domain is unlabeled. We show that when labeled source examples are limited, existing methods often fail to learn discriminative features applicable for both source and target domains. We propose a novel Cross-Domain Self-supervised (CDS) learning approach for domain adaptation, which learns features that are not only domain-invariant but also class-discriminative. Our self-supervised learning method captures apparent visual similarity with in-domain self-supervision in a domain adaptive manner and performs cross-domain feature matching with across-domain self-supervision. In extensive experiments with three standard benchmark datasets, our method significantly boosts performance of target accuracy in the new target domain with few source labels and is even helpful on classical domain adaptation scenarios.



rate research

Read More

Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works impractical. To cope with this problem, recent work performed instance-wise cross-domain self-supervised learning, followed by an additional fine-tuning stage. However, the instance-wise self-supervised learning only learns and aligns low-level discriminative features. In this paper, we propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA). PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains. Our framework captures category-wise semantic structures of the data by in-domain prototypical contrastive learning; and performs feature alignment through cross-domain prototypical self-supervision. Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively. Our project page is at http://xyue.io/pcs-fuda/index.html
Domain adaptation aims to generalize a model from a source domain to tackle tasks in a related but different target domain. Traditional domain adaptation algorithms assume that enough labeled data, which are treated as the prior knowledge are available in the source domain. However, these algorithms will be infeasible when only a few labeled data exist in the source domain, and thus the performance decreases significantly. To address this challenge, we propose a Domain-invariant Graph Learning (DGL) approach for domain adaptation with only a few labeled source samples. Firstly, DGL introduces the Nystrom method to construct a plastic graph that shares similar geometric property as the target domain. And then, DGL flexibly employs the Nystrom approximation error to measure the divergence between plastic graph and source graph to formalize the distribution mismatch from the geometric perspective. Through minimizing the approximation error, DGL learns a domain-invariant geometric graph to bridge source and target domains. Finally, we integrate the learned domain-invariant graph with the semi-supervised learning and further propose an adaptive semi-supervised model to handle the cross-domain problems. The results of extensive experiments on popular datasets verify the superiority of DGL, especially when only a few labeled source samples are available.
It is a strong prerequisite to access source data freely in many existing unsupervised domain adaptation approaches. However, source data is agnostic in many practical scenarios due to the constraints of expensive data transmission and data privacy protection. Usually, the given source domain pre-trained model is expected to optimize with only unlabeled target data, which is termed as source-free unsupervised domain adaptation. In this paper, we solve this problem from the perspective of noisy label learning, since the given pre-trained model can pre-generate noisy label for unlabeled target data via directly network inference. Under this problem modeling, incorporating self-supervised learning, we propose a novel Self-Supervised Noisy Label Learning method, which can effectively fine-tune the pre-trained model with pre-generated label as well as selfgenerated label on the fly. Extensive experiments had been conducted to validate its effectiveness. Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin. Code will be released.
93 - Xiao Lin , Meng Ye , Yunye Gong 2021
Adapting pre-trained representations has become the go-to recipe for learning new downstream tasks with limited examples. While literature has demonstrated great successes via representation learning, in this work, we show that substantial performance improvement of downstream tasks can also be achieved by appropriate designs of the adaptation process. Specifically, we propose a modular adaptation method that selectively performs multiple state-of-the-art (SOTA) adaptation methods in sequence. As different downstream tasks may require different types of adaptation, our modular adaptation enables the dynamic configuration of the most suitable modules based on the downstream task. Moreover, as an extension to existing cross-domain 5-way k-shot benchmarks (e.g., miniImageNet -> CUB), we create a new high-way (~100) k-shot benchmark with data from 10 different datasets. This benchmark provides a diverse set of domains and allows the use of stronger representations learned from ImageNet. Experimental results show that by customizing adaptation process towards downstream tasks, our modular adaptation pipeline (MAP) improves 3.1% in 5-shot classification accuracy over baselines of finetuning and Prototypical Networks.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا