Do you want to publish a course? Click here

High-Resolution Speaker Counting In Reverberant Rooms Using CRNN With Ambisonics Features

114   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Speaker counting is the task of estimating the number of people that are simultaneously speaking in an audio recording. For several audio processing tasks such as speaker diarization, separation, localization and tracking, knowing the number of speakers at each timestep is a prerequisite, or at least it can be a strong advantage, in addition to enabling a low latency processing. For that purpose, we address the speaker counting problem with a multichannel convolutional recurrent neural network which produces an estimation at a short-term frame resolution. We trained the network to predict up to 5 concurrent speakers in a multichannel mixture, with simulated data including many different conditions in terms of source and microphone positions, reverberation, and noise. The network can predict the number of speakers with good accuracy at frame resolution.



rate research

Read More

Speaker counting is the task of estimating the number of people that are simultaneously speaking in an audio recording. For several audio processing tasks such as speaker diarization, separation, localization and tracking, knowing the number of speakers at each timestep is a prerequisite, or at least it can be a strong advantage, in addition to enabling a low latency processing. In a previous work, we addressed the speaker counting problem with a multichannel convolutional recurrent neural network which produces an estimation at a short-term frame resolution. In this work, we show that, for a given frame, there is an optimal position in the input sequence for best prediction accuracy. We empirically demonstrate the link between that optimal position, the length of the input sequence and the size of the convolutional filters.
Audio tagging aims to detect the types of sound events occurring in an audio recording. To tag the polyphonic audio recordings, we propose to use Connectionist Temporal Classification (CTC) loss function on the top of Convolutional Recurrent Neural Network (CRNN) with learnable Gated Linear Units (GLU-CTC), based on a new type of audio label data: Sequentially Labelled Data (SLD). In GLU-CTC, CTC objective function maps the frame-level probability of labels to clip-level probability of labels. To compare the mapping ability of GLU-CTC for sound events, we train a CRNN with GLU based on Global Max Pooling (GLU-GMP) and a CRNN with GLU based on Global Average Pooling (GLU-GAP). And we also compare the proposed GLU-CTC system with the baseline system, which is a CRNN trained using CTC loss function without GLU. The experiments show that the GLU-CTC achieves an Area Under Curve (AUC) score of 0.882 in audio tagging, outperforming the GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of 0.837. That means based on the same CRNN model with GLU, the performance of CTC mapping is better than the GMP and GAP mapping. Given both based on the CTC mapping, the CRNN with GLU outperforms the CRNN without GLU.
In this work, we propose a novel self-attention based neural network for robust multi-speaker localization from Ambisonics recordings. Starting from a state-of-the-art convolutional recurrent neural network, we investigate the benefit of replacing the recurrent layers by self-attention encoders, inherited from the Transformer architecture. We evaluate these models on synthetic and real-world data, with up to 3 simultaneous speakers. The obtained results indicate that the majority of the proposed architectures either perform on par, or outperform the CRNN baseline, especially in the multisource scenario. Moreover, by avoiding the recurrent layers, the proposed models lend themselves to parallel computing, which is shown to produce considerable savings in execution time.
Speaker clustering is the task of forming speaker-specific groups based on a set of utterances. In this paper, we address this task by using Dominant Sets (DS). DS is a graph-based clustering algorithm with interesting properties that fits well to our problem and has never been applied before to speaker clustering. We report on a comprehensive set of experiments on the TIMIT dataset against standard clustering techniques and specific speaker clustering methods. Moreover, we compare performances under different features by using ones learned via deep neural network directly on TIMIT and other ones extracted from a pre-trained VGGVox net. To asses the stability, we perform a sensitivity analysis on the free parameters of our method, showing that performance is stable under parameter changes. The extensive experimentation carried out confirms the validity of the proposed method, reporting state-of-the-art results under three different standard metrics. We also report reference baseline results for speaker clustering on the entire TIMIT dataset for the first time.
Reverberation is present in our workplaces, our homes, concert halls and theatres. This paper investigates how deep learning can use the effect of reverberation on speech to classify a recording in terms of the room in which it was recorded. Existing approaches in the literature rely on domain expertise to manually select acoustic parameters as inputs to classifiers. Estimation of these parameters from reverberant speech is adversely affected by estimation errors, impacting the classification accuracy. In order to overcome the limitations of previously proposed methods, this paper shows how DNNs can perform the classification by operating directly on reverberant speech spectra and a CRNN with an attention-mechanism is proposed for the task. The relationship is investigated between the reverberant speech representations learned by the DNNs and acoustic parameters. For evaluation, AIRs are used from the ACE-challenge dataset that were measured in 7 real rooms. The classification accuracy of the CRNN classifier in the experiments is 78% when using 5 hours of training data and 90% when using 10 hours.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا