Do you want to publish a course? Click here

Electrical generation and detection of terahertz signal based on spin-wave emission from ferrimagnets

65   0   0.0 ( 0 )
 Added by Zhifeng Zhu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Terahertz (THz) signals, mainly generated by photonic or electronic approaches, are being sought for various applications, whereas the development of magnetic source might be a necessary step to harness the magnetic nature of electromagnetic radiation. We show that the relativistic effect on the current-driven domain-wall motion induces THz spin-wave emission in ferrimagnets. The required current density increases dramatically in materials with strong exchange interaction and rapidly exceeds 1012 A m-2, leading to the device breakdown and thus the lack of experimental evidence. By translating the collective magnetization oscillations into voltage signals, we propose a three-terminal device for the electrical detection of THz spin wave. Through material engineering, wide frequency range from 264 GHz to 1.1 THz and uniform continuous signals with improved output power can be obtained. As a reverse effect, the spin wave generated in this system is able to move ferrimagnetic domain wall. Our work provides guidelines for the experimental verification of THz spin wave, and could stimulate the design of THz spintronic oscillators for wideband applications as well as the all-magnon spintronic devices.

rate research

Read More

We report on the electrical detection of a hybrid magnon-photon system, which is comprised of a magnetic sample coupled to a planar cavity. While the uniform Kittel mode has the largest coupling strength among all the magnon modes, it only generates a modest voltage signal by means of inverse spin-Hall effect. We have found that the generated voltage can be significantly enhanced by introducing a higher order magnon mode, which possesses a much higher spin pumping efficiency and furthermore, it is nearly degenerated with the Kittel mode. The experimental results can be explained by our theoretical model, and suggest that the use of an auxiliary magnon mode can realize the configuration of a magnon-photon system with both strong coupling and large spin current.
The terahertz spectral regime, ranging from about 0.1 to 15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broadband and gapless spectrum that can be tailored for various pump photon energies. Here we demonstrate efficient single-cycle broadband THz generation, ranging from about 0.1 to 4 THz, from a thin layer of split-ring resonators with few tens of nanometers thickness by pumping at the telecommunications wavelength of 1.5 micrometer (200 THz). The terahertz emission arises from exciting the magnetic-dipole resonance of the split-ring resonators and quickly decreases under off-resonance pumping. This, together with pump polarization dependence and power scaling of the terahertz emission, identifies the role of optically induced nonlinear currents in split-ring resonators. We also reveal a giant sheet nonlinear susceptibility $sim$10$^{-16}$ m$^2$V$^{-1}$ that far exceeds thin films and bulk non-centrosymmetric materials.
The demand for compact, high-speed and energy-saving circuitry urges higher efficiency of spintronic devices that can offer a viable alternative for the current electronics. The route towards this goal suggests implementing two-dimensional (2D) materials that provide large spin polarization of charge current together with the long-distance transfer of the spin information. Here, for the first time, we experimentally demonstrate a large spin polarization of the graphene conductivity ($approx 14%$) arising from a strong induced exchange interaction in proximity to a 2D layered antiferromagnetic. The strong coupling of charge and spin currents in graphene with high efficiency of spin current generation, comparable to that of metallic ferromagnets, together with the observation of spin-dependent Seebeck and anomalous Hall effects, all consistently confirm the magnetic nature of graphene. The high sensitivity of spin transport in graphene to the magnetization of the outermost layer of the adjacent interlayer antiferromagnet, also provides a tool to read out a single magnetic sub-lattice. The first time observations of the electrical and thermal generation of spin currents by magnetic graphene suggest it as the ultimate building block for ultra-thin magnetic memory and sensory devices, combining gate tunable spin-dependent conductivity, long-distance spin transport and spin-orbit coupling all in a single 2D material.
Electrical generation of THz spin waves is theoretically explored in an antiferromangetic nanostrip via the current-induced spin-orbit torque. The analysis based on micromagnetic simulations clearly illustrates that the Neel-vector oscillations excited at one end of the magnetic strip can propagate in the form of a traveling wave when the nanostrip axis aligns with the magnetic easy-axis. A sizable threshold is observed in the driving current density or the torque to overcome the unfavorable anisotropy as expected. The generated spin waves are found to travel over a long distance while the angle of rotation undergoes continuous decay in the presence of non-zero damping. The oscillation frequency is tunable via the strength of the spin-orbit torque, reaching the THz regime. Other key characteristics of the spin waves such as the phase and the chirality can also be modulated actively. The simulation results further indicate the possibility of wave-like superposition between the excited spin oscillations, illustrating its application as an efficient source of spin-wave signals for information processing.
We demonstrate all-electrical spin generation and subsequent manipulation by two successive electric field pulses in an n-InGaAs heterostructure in a time-resolved experiment at zero external magnetic field. The first electric field pulse along the $[1bar10]$ crystal axis creates a current induced spin polarization (CISP) which is oriented in the plane of the sample. The subsequent electric field pulse along [110] generates a perpendicular magnetic field pulse leading to a coherent precession of this spin polarization with 2-dimensional electrical control over the final spin orientation. Spin precession is probed by time-resolved Faraday rotation. We determine the build-up time of CISP during the first field pulse and extract the spin dephasing time and internal magnetic field strength during the spin manipulation pulse.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا