No Arabic abstract
We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and linearly in time, driven across the critical value of a zero-temperature quantum transition. In particular we address whether, and under which conditions, open quantum systems can develop a universal dynamic scaling regime similar to that emerging in closed systems. We focus on a class of dissipative mechanisms whose dynamics can be reliably described through a Lindblad master equation governing the time evolution of the systems density matrix. We argue that a dynamic scaling limit exists even in the presence of dissipation, whose main features are controlled by the universality class of the quantum transition. This requires a particular tuning of the dissipative interactions, whose decay rate $u$ should scale as $usim t_s^{-kappa}$ with increasing the time scale $t_s$ of the KZ protocol, where the exponent $kappa = z/(y_mu+z)$ depends on the dynamic exponent $z$ and the renormalization-group dimension $y_mu$ of the driving Hamiltonian parameter. Our dynamic scaling arguments are supported by numerical results for KZ protocols applied to a one-dimensional fermionic wire undergoing a quantum transition in the same universality class of the quantum Ising chain, in the presence of dissipative mechanisms which include local pumping, decay, and dephasing.
We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and dissipative quadratic forms. The underlying scheme is the pure-quantum self-consistent harmonic approximation (PQSCHA), equivalent to the variational approach by the Feynman-Jensen inequality with a suitable quadratic nonlocal trial action. A low-coupling approximation permits to get manageable PQSCHA expressions for quantum thermal averages with a classical Boltzmann factor involving an effective potential and an inner Gaussian average that describes the fluctuations originating from the interplay of quanticity and dissipation. The application of the PQSCHA to a quantum phi4-chain with Drude-like dissipation shows nontrivial effects of dissipation, depending upon its strength and bandwidth.
The Kibble-Zurek mechanism constitutes one of the most fascinating and universal phenomena in the physics of critical systems. It describes the formation of domains and the spontaneous nucleation of topological defects when a system is driven across a phase transition exhibiting spontaneous symmetry breaking. While a characteristic dependence of the defect density on the speed at which the transition is crossed was observed in a vast range of equilibrium condensed matter systems, its extension to intrinsically driven-dissipative systems is a matter of ongoing research. In this work we numerically confirm the Kibble-Zurek mechanism in a paradigmatic family of driven-dissipative quantum systems, namely exciton-polaritons in microcavities. Our findings show how the concepts of universality and critical dynamics extend to driven-dissipative systems that do not conserve energy or particle number nor satisfy a detailed balance condition.
We present an analog of the phenomenon of orthogonality catastrophe in quantum many body systems subject to a local dissipative impurity. We show that the fidelity $F(t)$, giving a measure for distance of the time-evolved state from the initial one, displays a universal scaling form $F(t)propto t^theta e^{-gamma t}$, when the system supports long range correlations, in a fashion reminiscent of traditional instances of orthogonality catastrophe in condensed matter. An exponential fall-off at rate $gamma$ signals the onset of environmental decoherence, which is critically slowed down by the additional algebraic contribution to the fidelity. This picture is derived within a second order cumulant expansion suited for Liouvillian dynamics, and substantiated for the one-dimensional transverse field quantum Ising model subject to a local dephasing jump operator, as well as for XY and XX quantum spin chains, and for the two dimensional Bose gas deep in the superfluid phase with local particle heating. Our results hint that local sources of dissipation can be used to inspect real-time correlations and to induce a delay of decoherence in open quantum many body systems.
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production saturates in isolated quantum systems under unitary dynamics. First, we rigorously prove the saturation of the entropy production in the long time regime, where a total system can be in a pure state. Second, we discuss the non-negativity of the entropy production at saturation, implying the second law of thermodynamics. This is based on the eigenstate thermalization hypothesis (ETH), which states that even a single energy eigenstate is thermal. We also numerically demonstrate that the entropy production saturates at a non-negative value even when the initial state of a heat bath is a single energy eigenstate. Our results reveal fundamental properties of the entropy production in isolated quantum systems at late times.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appear in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.