We have investigated magnetotransport properties and the topological electronic structure of the half-Heusler compound TbPtBi. Our experiments reveal an exceptionally large anomalous Hall effect (AHE) in the canted antiferromagnetic state of TbPtBi with the anomalous Hall angle (AHA) reaching ~0.68-0.76, which is a few times larger than the previously reported record in GdPtBi. First-principles electronic structure and the associated anomalous Hall conductivity were computed in order to interpret the experimental results. Our analysis shows that the AHE in TbPtBi does not originate from the Weyl points but that it is driven by the large net Berry curvature produced by the anticrossing of spin-split bands near the Fermi level in TbPtBi.
Magnetic lanthanide half-Heuslers ($R$PtBi; $R$ being the lanthanide) represent an attractive subgroup of the Heusler family and have been identified as ideal candidates for time reversal symmetry breaking topological Weyl semimetals. In this paper, we present the detailed analysis of the magnetotransport properties of frustrated antiferromagnet TbPtBi. This material shows large, non-saturating magnetoresistance (MR) with unusual magnetic field dependence. The MR of TbPtBi is significantly anisotropic with respect to the magnetic field, applied along different crystallographic directions and indicates the anisotropic nature of the Fermi surface. The chiral anomaly induced negative longitudinal magnetoresistance confirms the presence of Weyl fermions. At low temperature, Berry phase driven large anomalous Hall conductivity has been observed. The calculated anomalous Hall angle is the largest reported so far.
Electron correlation and topology are two central threads of modern condensed matter physics. Semiconductor moire materials provide a highly tunable platform for studies of electron correlation. Correlation-driven phenomena, including the Mott insulator, generalized Wigner crystals, stripe phases and continuous Mott transition, have been demonstrated. However, nontrivial band topology has remained elusive. Here we report the observation of a quantum anomalous Hall (QAH) effect in AB-stacked MoTe2/WSe2 moire heterobilayers. Unlike in the AA-stacked structures, an out-of-plane electric field controls not only the bandwidth but also the band topology by intertwining moire bands centered at different high-symmetry stacking sites. At half band filling, corresponding to one particle per moire unit cell, we observe quantized Hall resistance, h/e2 (with h and e denoting the Plancks constant and electron charge, respectively), and vanishing longitudinal resistance at zero magnetic field. The electric-field-induced topological phase transition from a Mott insulator to a QAH insulator precedes an insulator-to-metal transition; contrary to most known topological phase transitions, it is not accompanied by a bulk charge gap closure. Our study paves the path for discovery of a wealth of emergent phenomena arising from the combined influence of strong correlation and topology in semiconductor moire materials.
We report on numerical simulations of the intrinsic spin Hall effect in semiconductor quantum wires as a function of the Rashba spin-orbit coupling strength, the electron density, and the width of the wire. We find that the strength of the spin Hall effect does not depend monotonically on these parameters, but instead exhibits a local maximum. This behavior is explained by considering the dispersion relation of the electrons in the wire, which is characterized by the anticrossing of adjacent subbands. These results lead to a simple estimate of the optimal wire width for spin Hall transport experiments, and simulations indicate that this optimal width is independent of disorder. The anticrossing of adjacent subbands is related to a quantum phase transition in momentum space, and is accompanied by an enhancement of the Berry curvature and subsequently in the magnitude of the spin Hall effect.
Though Weyl fermions have recently been observed in several materials with broken inversion symmetry, there are very few examples of such systems with broken time reversal symmetry. Various Co$_{2}$-based half-metallic ferromagnetic Heusler compounds are lately predicted to host Weyl type excitations in their band structure. These magnetic Heusler compounds with broken time reversal symmetry are expected to show a large momentum space Berry curvature, which introduces several exotic magneto-transport properties. In this report, we present systematic analysis of experimental results on anomalous Hall effect (AHE) in Co$_2$Ti$X$ ($X$=Si and Ge). This study is an attempt to understand the role of Berry curvature on AHE in Co$_2$Ti$X$ family of materials. The anomalous Hall resistivity is observed to scale quadratically with the longitudinal resistivity for both the compounds. The detailed analysis indicates that in anomalous Hall conductivity, the intrinsic Karplus-Luttinger Berry phase mechanism dominates over the extrinsic skew scattering and side-jump mechanism.
Three-dimensional (3D) compensated MnBi2Te4 is antiferromagnetic, but undergoes a spin-flop transition at intermediate fields, resulting in a canted phase before saturation. In this work, we experimentally show that the anomalous Hall effect (AHE) in MnBi2Te4 originates from a topological response that is sensitive to the perpendicular magnetic moment and to its canting angle. Synthesis by molecular beam epitaxy allows us to obtain a large-area quasi-3D 24-layer MnBi2Te4 with near-perfect compensation that hosts the phase diagram observed in bulk which we utilize to probe the AHE. This AHE is seen to exhibit an antiferromagnetic response at low magnetic fields, and a clear evolution at intermediate fields through surface and bulk spin-flop transitions into saturation. Throughout this evolution, the AHE is super-linear versus magnetization rather than the expected linear relationship. We reveal that this discrepancy is related to the canting angle, consistent with the symmetry of the crystal. Our findings suggests that novel topological responses may be found in non-collinear ferromagnetic, and antiferromagnetic phases.
Yanglin Zhu
,Bahadur Singh
,Yu Wang
.
(2020)
.
"Exceptionally large anomalous Hall effect due to anticrossing of spin-split bands in the antiferromagnetic half-Heusler compound TbPtBi"
.
Yanglin Zhu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا