No Arabic abstract
Production and inventory planning have become crucial and challenging in nowadays competitive industrial and commercial sectors, especially when multiple plants or warehouses are involved. In this context, this paper addresses the complexity of uncapacitated multi-plant lot-sizing problems. We consider a multi-item uncapacitated multi-plant lot-sizing problem with fixed transfer costs and show that two of its very restricted special cases are already NP-hard. Namely, we show that the single-item uncapacitated multi-plant lot-sizing problem with a single period and the multi-item uncapacitated two-plant lot-sizing problem with fixed transfer costs are NP-hard. Furthermore, as a direct implication of the proven results, we also show that a two-echelon multi-item lot-sizing with joint setup costs on transportation is NP-hard.
We consider the non-stationary stochastic lot sizing problem with backorder costs and make a cost comparison among different lot-sizing strategies. We initially provide an overview of the strategies and some corresponding solution approaches in the literature. We then compare the cost performances of the lot-sizing strategies on a common test bed while taking into account the added value of realized demand information. The results of this numerical experience enable us to derive novel insights about the cost performance of different stochastic lot-sizing strategies under re-planning with respect to demand realization.
Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.
In this paper, we develop mixed integer linear programming models to compute near-optimal policy parameters for the non-stationary stochastic lot sizing problem under Bookbinder and Tans static-dynamic uncertainty strategy. Our models build on piecewise linear upper and lower bounds of the first order loss function. We discuss different formulations of the stochastic lot sizing problem, in which the quality of service is captured by means of backorder penalty costs, non-stockout probability, or fill rate constraints. These models can be easily adapted to operate in settings in which unmet demand is backordered or lost. The proposed approach has a number of advantages with respect to existing methods in the literature: it enables seamless modelling of different variants of the above problem, which have been previously tackled via ad-hoc solution methods; and it produces an accurate estimation of the expected total cost, expressed in terms of upper and lower bounds. Our computational study demonstrates the effectiveness and flexibility of our models.
Inspired by connections to two dimensional quantum theory, we define several models of computation based on permuting distinguishable particles (which we call balls), and characterize their computational complexity. In the quantum setting, we find that the computational power of this model depends on the initial input states. More precisely, with a standard basis input state, we show how to approximate the amplitudes of this model within additive error using the model DQC1 (the class of problems solvable with one clean qubit), providing evidence that the model in this case is weaker than universal quantum computing. However, for specific choices of input states, the model is shown to be universal for BQP in an encoded sense. We use representation theory of the symmetric group to partially classify the computational complexity of this model for arbitrary input states. Interestingly, we find some input states which yield a model intermediate between DQC1 and BQP. Furthermore, we consider a restricted version of this model based on an integrable scattering problem in 1+1 dimensions. We show it is universal under postselection, if we allow intermediate destructive measurements and specific input states. Therefore, the existence of any classical procedure to sample from the output distribution of this model within multiplicative error implies collapse of polynomial hierarchy to its third level. Finally, we define a classical version of this model in which one can probabilistically permute balls. We find this yields a complexity class which is intermediate between L and BPP. Moreover, we find a nondeterministic version of this model is NP-complete.
Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in fixed-point logic with counting. The border between the two regimes coincides with an important dichotomy in universal algebra; in particular, the border can be described by a strong height-one Maltsev condition. For infinite-domain CSPs, the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (Q;<); such CSPs are called temporal CSPs and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the Boolean rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.