No Arabic abstract
We investigate the capacity control provided by dropout in various machine learning problems. First, we study dropout for matrix completion, where it induces a data-dependent regularizer that, in expectation, equals the weighted trace-norm of the product of the factors. In deep learning, we show that the data-dependent regularizer due to dropout directly controls the Rademacher complexity of the underlying class of deep neural networks. These developments enable us to give concrete generalization error bounds for the dropout algorithm in both matrix completion as well as training deep neural networks. We evaluate our theoretical findings on real-world datasets, including MovieLens, MNIST, and Fashion-MNIST.
The training phases of Deep neural network~(DNN) consumes enormous processing time and energy. Compression techniques utilizing the sparsity of DNNs can effectively accelerate the inference phase of DNNs. However, it can be hardly used in the training phase because the training phase involves dense matrix-multiplication using General Purpose Computation on Graphics Processors (GPGPU), which endorse regular and structural data layout. In this paper, we propose the Approximate Random Dropout that replaces the conventional random dropout of neurons and synapses with a regular and predefined patterns to eliminate the unnecessary computation and data access. To compensate the potential performance loss we develop a SGD-based Search Algorithm to produce the distribution of dropout patterns. We prove our approach is statistically equivalent to the previous dropout method. Experiments results on MLP and LSTM using well-known benchmarks show that the proposed Approximate Random Dropout can reduce the training time by $20%$-$77%$ ($19%$-$60%$) when dropout rate is $0.3$-$0.7$ on MLP (LSTM) with marginal accuracy drop.
Due to lack of data, overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs). We propose advanced dropout, a model-free methodology, to mitigate overfitting and improve the performance of DNNs. The advanced dropout technique applies a model-free and easily implemented distribution with parametric prior, and adaptively adjusts dropout rate. Specifically, the distribution parameters are optimized by stochastic gradient variational Bayes in order to carry out an end-to-end training. We evaluate the effectiveness of the advanced dropout against nine dropout techniques on seven computer vision datasets (five small-scale datasets and two large-scale datasets) with various base models. The advanced dropout outperforms all the referred techniques on all the datasets.We further compare the effectiveness ratios and find that advanced dropout achieves the highest one on most cases. Next, we conduct a set of analysis of dropout rate characteristics, including convergence of the adaptive dropout rate, the learned distributions of dropout masks, and a comparison with dropout rate generation without an explicit distribution. In addition, the ability of overfitting prevention is evaluated and confirmed. Finally, we extend the application of the advanced dropout to uncertainty inference, network pruning, text classification, and regression. The proposed advanced dropout is also superior to the corresponding referred methods. Codes are available at https://github.com/PRIS-CV/AdvancedDropout.
Recently, path norm was proposed as a new capacity measure for neural networks with Rectified Linear Unit (ReLU) activation function, which takes the rescaling-invariant property of ReLU into account. It has been shown that the generalization error bound in terms of the path norm explains the empirical generalization behaviors of the ReLU neural networks better than that of other capacity measures. Moreover, optimization algorithms which take path norm as the regularization term to the loss function, like Path-SGD, have been shown to achieve better generalization performance. However, the path norm counts the values of all paths, and hence the capacity measure based on path norm could be improperly influenced by the dependency among different paths. It is also known that each path of a ReLU network can be represented by a small group of linearly independent basis paths with multiplication and division operation, which indicates that the generalization behavior of the network only depends on only a few basis paths. Motivated by this, we propose a new norm emph{Basis-path Norm} based on a group of linearly independent paths to measure the capacity of neural networks more accurately. We establish a generalization error bound based on this basis path norm, and show it explains the generalization behaviors of ReLU networks more accurately than previous capacity measures via extensive experiments. In addition, we develop optimization algorithms which minimize the empirical risk regularized by the basis-path norm. Our experiments on benchmark datasets demonstrate that the proposed regularization method achieves clearly better performance on the test set than the previous regularization approaches.
We study dropout in two-layer neural networks with rectified linear unit (ReLU) activations. Under mild overparametrization and assuming that the limiting kernel can separate the data distribution with a positive margin, we show that dropout training with logistic loss achieves $epsilon$-suboptimality in test error in $O(1/epsilon)$ iterations.
Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not only interprets the regularization capacity of Gaussian dropout in network training, but also underpins the inference of such posterior. However, the log-uniform prior is an improper prior (i.e., its integral is infinite) which causes the inference of posterior to be ill-posed, thus restricting the regularization performance of VD. To address this problem, we present a new generalization of Gaussian dropout, termed variational Bayesian dropout (VBD), which turns to exploit a hierarchical prior on the network weights and infer a new joint posterior. Specifically, we implement the hierarchical prior as a zero-mean Gaussian distribution with variance sampled from a uniform hyper-prior. Then, we incorporate such a prior into inferring the joint posterior over network weights and the variance in the hierarchical prior, with which both the network training and the dropout rate estimation can be cast into a joint optimization problem. More importantly, the hierarchical prior is a proper prior which enables the inference of posterior to be well-posed. In addition, we further show that the proposed VBD can be seamlessly applied to network compression. Experiments on both classification and network compression tasks demonstrate the superior performance of the proposed VBD in terms of regularizing network training.