Do you want to publish a course? Click here

Advanced Dropout: A Model-free Methodology for Bayesian Dropout Optimization

83   0   0.0 ( 0 )
 Added by Jiyang Xie
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Due to lack of data, overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs). We propose advanced dropout, a model-free methodology, to mitigate overfitting and improve the performance of DNNs. The advanced dropout technique applies a model-free and easily implemented distribution with parametric prior, and adaptively adjusts dropout rate. Specifically, the distribution parameters are optimized by stochastic gradient variational Bayes in order to carry out an end-to-end training. We evaluate the effectiveness of the advanced dropout against nine dropout techniques on seven computer vision datasets (five small-scale datasets and two large-scale datasets) with various base models. The advanced dropout outperforms all the referred techniques on all the datasets.We further compare the effectiveness ratios and find that advanced dropout achieves the highest one on most cases. Next, we conduct a set of analysis of dropout rate characteristics, including convergence of the adaptive dropout rate, the learned distributions of dropout masks, and a comparison with dropout rate generation without an explicit distribution. In addition, the ability of overfitting prevention is evaluated and confirmed. Finally, we extend the application of the advanced dropout to uncertainty inference, network pruning, text classification, and regression. The proposed advanced dropout is also superior to the corresponding referred methods. Codes are available at https://github.com/PRIS-CV/AdvancedDropout.



rate research

Read More

Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not only interprets the regularization capacity of Gaussian dropout in network training, but also underpins the inference of such posterior. However, the log-uniform prior is an improper prior (i.e., its integral is infinite) which causes the inference of posterior to be ill-posed, thus restricting the regularization performance of VD. To address this problem, we present a new generalization of Gaussian dropout, termed variational Bayesian dropout (VBD), which turns to exploit a hierarchical prior on the network weights and infer a new joint posterior. Specifically, we implement the hierarchical prior as a zero-mean Gaussian distribution with variance sampled from a uniform hyper-prior. Then, we incorporate such a prior into inferring the joint posterior over network weights and the variance in the hierarchical prior, with which both the network training and the dropout rate estimation can be cast into a joint optimization problem. More importantly, the hierarchical prior is a proper prior which enables the inference of posterior to be well-posed. In addition, we further show that the proposed VBD can be seamlessly applied to network compression. Experiments on both classification and network compression tasks demonstrate the superior performance of the proposed VBD in terms of regularizing network training.
Approximate inference in deep Bayesian networks exhibits a dilemma of how to yield high fidelity posterior approximations while maintaining computational efficiency and scalability. We tackle this challenge by introducing a novel variational structured approximation inspired by the Bayesian interpretation of Dropout regularization. Concretely, we focus on the inflexibility of the factorized structure in Dropout posterior and then propose an improved method called Variational Structured Dropout (VSD). VSD employs an orthogonal transformation to learn a structured representation on the variational noise and consequently induces statistical dependencies in the approximate posterior. Theoretically, VSD successfully addresses the pathologies of previous Variational Dropout methods and thus offers a standard Bayesian justification. We further show that VSD induces an adaptive regularization term with several desirable properties which contribute to better generalization. Finally, we conduct extensive experiments on standard benchmarks to demonstrate the effectiveness of VSD over state-of-the-art variational methods on predictive accuracy, uncertainty estimation, and out-of-distribution detection.
The training phases of Deep neural network~(DNN) consumes enormous processing time and energy. Compression techniques utilizing the sparsity of DNNs can effectively accelerate the inference phase of DNNs. However, it can be hardly used in the training phase because the training phase involves dense matrix-multiplication using General Purpose Computation on Graphics Processors (GPGPU), which endorse regular and structural data layout. In this paper, we propose the Approximate Random Dropout that replaces the conventional random dropout of neurons and synapses with a regular and predefined patterns to eliminate the unnecessary computation and data access. To compensate the potential performance loss we develop a SGD-based Search Algorithm to produce the distribution of dropout patterns. We prove our approach is statistically equivalent to the previous dropout method. Experiments results on MLP and LSTM using well-known benchmarks show that the proposed Approximate Random Dropout can reduce the training time by $20%$-$77%$ ($19%$-$60%$) when dropout rate is $0.3$-$0.7$ on MLP (LSTM) with marginal accuracy drop.
This paper demonstrates how Dropout can be used in Generative Adversarial Networks to generate multiple different outputs to one input. This method is thought as an alternative to latent space exploration, especially if constraints in the input should be preserved, like in A-to-B translation tasks.
We investigate the capacity control provided by dropout in various machine learning problems. First, we study dropout for matrix completion, where it induces a data-dependent regularizer that, in expectation, equals the weighted trace-norm of the product of the factors. In deep learning, we show that the data-dependent regularizer due to dropout directly controls the Rademacher complexity of the underlying class of deep neural networks. These developments enable us to give concrete generalization error bounds for the dropout algorithm in both matrix completion as well as training deep neural networks. We evaluate our theoretical findings on real-world datasets, including MovieLens, MNIST, and Fashion-MNIST.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا