Do you want to publish a course? Click here

$MC^2RAM$: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian Inference

110   0   0.0 ( 0 )
 Added by Priyesh Shukla
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This work discusses the implementation of Markov Chain Monte Carlo (MCMC) sampling from an arbitrary Gaussian mixture model (GMM) within SRAM. We show a novel architecture of SRAM by embedding it with random number generators (RNGs), digital-to-analog converters (DACs), and analog-to-digital converters (ADCs) so that SRAM arrays can be used for high performance Metropolis-Hastings (MH) algorithm-based MCMC sampling. Most of the expensive computations are performed within the SRAM and can be parallelized for high speed sampling. Our iterative compute flow minimizes data movement during sampling. We characterize power-performance trade-off of our design by simulating on 45 nm CMOS technology. For a two-dimensional, two mixture GMM, the implementation consumes ~ 91 micro-Watts power per sampling iteration and produces 500 samples in 2000 clock cycles on an average at 1 GHz clock frequency. Our study highlights interesting insights on how low-level hardware non-idealities can affect high-level sampling characteristics, and recommends ways to optimally operate SRAM within area/power constraints for high performance sampling.



rate research

Read More

We present the Solar Bayesian Analysis Toolkit (SoBAT) which is a new easy to use tool for Bayesian analysis of observational data, including parameter inference and model comparison. SoBAT is aimed (but not limited) to be used for the analysis of solar observational data. We describe a new Interactive Data Language (IDL) code designed to facilitate the comparison of user-supplied model with data. Bayesian inference allows prior information to be taken into account. The use of Markov chain Monte Carlo (MCMC) sampling allows efficient exploration of large parameter spaces and provides reliable estimation of model parameters and their uncertainties. The Bayesian evidence for different models can be used for quantitative comparison. The code is tested to demonstrate its ability to accurately recover a variety of parameter probability distributions. Its application to practical problems is demonstrated using studies of the structure and oscillation of coronal loops.
Irreversible and rejection-free Monte Carlo methods, recently developed in Physics under the name Event-Chain and known in Statistics as Piecewise Deterministic Monte Carlo (PDMC), have proven to produce clear acceleration over standard Monte Carlo methods, thanks to the reduction of their random-walk behavior. However, while applying such schemes to standard statistical models, one generally needs to introduce an additional randomization for sake of correctness. We propose here a new class of Event-Chain Monte Carlo methods that reduces this extra-randomization to a bare minimum. We compare the efficiency of this new methodology to standard PDMC and Monte Carlo methods. Accelerations up to several magnitudes and reduced dimensional scalings are exhibited.
Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompanying methodology, borrowing ideas from statistical physics and computational chemistry, for inferring the posterior distribution of latent diffusion paths and model parameters, given observations of the process. Joint configurations of the underlying process noise and of parameters, mapping onto diffusion paths consistent with observations, form an implicitly defined manifold. Then, by making use of a constrained Hamiltonian Monte Carlo algorithm on the embedded manifold, we are able to perform computationally efficient inference for an extensive class of discretely observed diffusion models. Critically, in contrast with other approaches proposed in the literature, our methodology is highly automated, requiring minimal user intervention and applying alike in a range of settings, including: elliptic or hypo-elliptic systems; observations with or without noise; linear or non-linear observation operators. Exploiting Markovianity, we propose a variant of the method with complexity that scales linearly in the resolution of path discretisation and the number of observation times.
In Bayesian inference, predictive distributions are typically in the form of samples generated via Markov chain Monte Carlo (MCMC) or related algorithms. In this paper, we conduct a systematic analysis of how to make and evaluate probabilistic forecasts from such simulation output. Based on proper scoring rules, we develop a notion of consistency that allows to assess the adequacy of methods for estimating the stationary distribution underlying the simulation output. We then provide asymptotic results that account for the salient features of Bayesian posterior simulators, and derive conditions under which choices from the literature satisfy our notion of consistency. Importantly, these conditions depend on the scoring rule being used, such that the choices of approximation method and scoring rule are intertwined. While the logarithmic rule requires fairly stringent conditions, the continuous ranked probability score (CRPS) yields consistent approximations under minimal assumptions. These results are illustrated in a simulation study and an economic data example. Overall, mixture-of-parameters approximations which exploit the parametric structure of Bayesian models perform particularly well. Under the CRPS, the empirical distribution function is a simple and appealing alternative option.
168 - Ziming Liu , Zheng Zhang 2019
Hamiltonian Monte Carlo (HMC) is an efficient Bayesian sampling method that can make distant proposals in the parameter space by simulating a Hamiltonian dynamical system. Despite its popularity in machine learning and data science, HMC is inefficient to sample from spiky and multimodal distributions. Motivated by the energy-time uncertainty relation from quantum mechanics, we propose a Quantum-Inspired Hamiltonian Monte Carlo algorithm (QHMC). This algorithm allows a particle to have a random mass matrix with a probability distribution rather than a fixed mass. We prove the convergence property of QHMC and further show why such a random mass can improve the performance when we sample a broad class of distributions. In order to handle the big training data sets in large-scale machine learning, we develop a stochastic gradient version of QHMC using Nos{e}-Hoover thermostat called QSGNHT, and we also provide theoretical justifications about its steady-state distributions. Finally in the experiments, we demonstrate the effectiveness of QHMC and QSGNHT on synthetic examples, bridge regression, image denoising and neural network pruning. The proposed QHMC and QSGNHT can indeed achieve much more stable and accurate sampling results on the test cases.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا