Do you want to publish a course? Click here

Quantum-Inspired Hamiltonian Monte Carlo for Bayesian Sampling

169   0   0.0 ( 0 )
 Added by Ziming Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Hamiltonian Monte Carlo (HMC) is an efficient Bayesian sampling method that can make distant proposals in the parameter space by simulating a Hamiltonian dynamical system. Despite its popularity in machine learning and data science, HMC is inefficient to sample from spiky and multimodal distributions. Motivated by the energy-time uncertainty relation from quantum mechanics, we propose a Quantum-Inspired Hamiltonian Monte Carlo algorithm (QHMC). This algorithm allows a particle to have a random mass matrix with a probability distribution rather than a fixed mass. We prove the convergence property of QHMC and further show why such a random mass can improve the performance when we sample a broad class of distributions. In order to handle the big training data sets in large-scale machine learning, we develop a stochastic gradient version of QHMC using Nos{e}-Hoover thermostat called QSGNHT, and we also provide theoretical justifications about its steady-state distributions. Finally in the experiments, we demonstrate the effectiveness of QHMC and QSGNHT on synthetic examples, bridge regression, image denoising and neural network pruning. The proposed QHMC and QSGNHT can indeed achieve much more stable and accurate sampling results on the test cases.



rate research

Read More

Variational Monte Carlo (VMC) is an approach for computing ground-state wavefunctions that has recently become more powerful due to the introduction of neural network-based wavefunction parametrizations. However, efficiently training neural wavefunctions to converge to an energy minimum remains a difficult problem. In this work, we analyze optimization and sampling methods used in VMC and introduce alterations to improve their performance. First, based on theoretical convergence analysis in a noiseless setting, we motivate a new optimizer that we call the Rayleigh-Gauss-Newton method, which can improve upon gradient descent and natural gradient descent to achieve superlinear convergence with little added computational cost. Second, in order to realize this favorable comparison in the presence of stochastic noise, we analyze the effect of sampling error on VMC parameter updates and experimentally demonstrate that it can be reduced by the parallel tempering method. In particular, we demonstrate that RGN can be made robust to energy spikes that occur when new regions of configuration space become available to the sampler over the course of optimization. Finally, putting theory into practice, we apply our enhanced optimization and sampling methods to the transverse-field Ising and XXZ models on large lattices, yielding ground-state energy estimates with remarkably high accuracy after just 200-500 parameter updates.
We introduce a recent symplectic integration scheme derived for solving physically motivated systems with non-separable Hamiltonians. We show its relevance to Riemannian manifold Hamiltonian Monte Carlo (RMHMC) and provide an alternative to the currently used generalised leapfrog symplectic integrator, which relies on solving multiple fixed point iterations to convergence. Via this approach, we are able to reduce the number of higher-order derivative calculations per leapfrog step. We explore the implications of this integrator and demonstrate its efficacy in reducing the computational burden of RMHMC. Our code is provided in a new open-source Python package, hamiltorch.
Hamiltonian Monte Carlo (HMC) has been widely adopted in the statistics community because of its ability to sample high-dimensional distributions much more efficiently than other Metropolis-based methods. Despite this, HMC often performs sub-optimally on distributions with high correlations or marginal variances on multiple scales because the resulting stiffness forces the leapfrog integrator in HMC to take an unreasonably small stepsize. We provide intuition as well as a formal analysis showing how these multiscale distributions limit the stepsize of leapfrog and we show how the implicit midpoint method can be used, together with Newton-Krylov iteration, to circumvent this limitation and achieve major efficiency gains. Furthermore, we offer practical guidelines for when to choose between implicit midpoint and leapfrog and what stepsize to use for each method, depending on the distribution being sampled. Unlike previous modifications to HMC, our method is generally applicable to highly non-Gaussian distributions exhibiting multiple scales. We illustrate how our method can provide a dramatic speedup over leapfrog in the context of the No-U-Turn sampler (NUTS) applied to several examples.
Deep Gaussian Processes (DGPs) are hierarchical generalizations of Gaussian Processes that combine well calibrated uncertainty estimates with the high flexibility of multilayer models. One of the biggest challenges with these models is that exact inference is intractable. The current state-of-the-art inference method, Variational Inference (VI), employs a Gaussian approximation to the posterior distribution. This can be a potentially poor unimodal approximation of the generally multimodal posterior. In this work, we provide evidence for the non-Gaussian nature of the posterior and we apply the Stochastic Gradient Hamiltonian Monte Carlo method to generate samples. To efficiently optimize the hyperparameters, we introduce the Moving Window MCEM algorithm. This results in significantly better predictions at a lower computational cost than its VI counterpart. Thus our method establishes a new state-of-the-art for inference in DGPs.
We present a general-purpose method to train Markov chain Monte Carlo kernels, parameterized by deep neural networks, that converge and mix quickly to their target distribution. Our method generalizes Hamiltonian Monte Carlo and is trained to maximize expected squared jumped distance, a proxy for mixing speed. We demonstrate large empirical gains on a collection of simple but challenging distributions, for instance achieving a 106x improvement in effective sample size in one case, and mixing when standard HMC makes no measurable progress in a second. Finally, we show quantitative and qualitative gains on a real-world task: latent-variable generative modeling. We release an open source TensorFlow implementation of the algorithm.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا